Acronym: Project full title: Grant agreement No. Coordinator: FLARE Flooding Accident REsponse 814753 BALance Technology Consulting GmbH

Deliverable 2.1

The project has received funding from the European's Horizon 2020 research and innovation programme (Contract No.: 814753)

Deliverable data

Deliverable No	2.1	
Deliverable Title	Sample Ships - Overview	
Work Package no: title	WP2.1 Sample Ships	

Dissemination level	Public	Deliverable type	Report
Lead beneficiary	MW		
Responsible author	Henning Luhmann		
Co-authors	Anna-Lea Routi, Mike Juha Kujanpä	Cardinale, Rodolph	e Bertin, Gijs Streppel,
Date of delivery	15.10.2019		
Approved	Name (partner)		Date [DD-MM-YYYY]
Peer reviewer 1	Rodolphe Bertin (CdA)		10.07.2019

Document history

Version	Date	Description	
V02	29.6.2019	Initial version	
V03 12.07.2019		Amendments after review	

The research leading to these results has received funding from the European Union Horizon 2020 Program under grant agreement n° 814753.

This report reflects only the author's view. INEA is not responsible for any use that may be made of the information it contains.

The information contained in this report is subject to change without notice and should not be construed as a commitment by any members of the FLARE Consortium. In the event of any software or algorithms being described in this report, the FLARE Consortium assumes no responsibility for the use or inability to use any of its software or algorithms. The information is provided without any warranty of any kind and the FLARE Consortium expressly disclaims all implied warranties, including but not limited to the implied warranties of merchantability and fitness for a particular use.

© COPYRIGHT 2019 The FLARE consortium

This document may not be copied, reproduced, or modified in whole or in part for any purpose without written permission from the FLARE Consortium. In addition, to such written permission to copy, acknowledgement of the authors of the document and all applicable portions of the copyright notice must be clearly referenced. All rights reserved.

CONTENTS

Li	st of sy	mbols and abbreviations	4
Li	st of fig	jures	4
Li	st of ta	bles	4
1	EXE		5
	1.1	Problem definition	5
	1.2	Technical approach and work plan	5
	1.3	Results	5
	1.4	Conclusions and recommendation	5
2	INTE	RODUCTION	6
	2.1	Task/Sub-task text	6
3	STR	ATEGY TO SELECT SAMPLE SHIPS	6
4	со	NCLUSIONS AND RECOMMENDATIONS	9
	4.1	Selected ships	9
	4.2	Conclusions1	1
5	REF	ERENCES 1	2
6	AN	NEXES 1	2

List of symbols and abbreviations

- DoA Description of Action
- EC European Commission
- PMT Project Management Team
- SG Steering Group
- QA Quality Assurance
- GT Gross Tonnage
- NAPA Naval Architectural Package
- MVZ Main Vertical Zone
- FEM Finite Element Method
- POB Persons On Board

List of figures

Figure	1 Cruise Ship World Fleet (Source: ShipPax Database)	. 7
Figure	2 RoPax World Fleet (Source: ShipPax Database)	. 8
Figure	3 Sample cruise ships vs world fleet1	10
Figure	4 Selected RoPax designs vs world fleet1	11

List of tables

Table 1 overview of selected sample ships	9
Table 2 Overview of additional designs	10

1 EXECUTIVE SUMMARY

This report gives an overview of the selected sample ships to be designed and further used in this project.

1.1 Problem definition

- To ensure realistic research for the response to flooding events it is necessary to have sample ships available, which may be used in other work packages of this project as well as made available to the public.
- The basic requirements for the sample ship are to reflect large passenger ships design according to the latest SOLAS amendments (SOLAS2020)

1.2 Technical approach and work plan

- Eight designs have been selected from a number of ships proposed by the designers.
- Special focus has been laid to reflect, with the selection of ships, the widest range of the existing fleet of cruise ships and RoPax ferries
- As there has been the request from WP3 to provide a sample ship including manoeuvring information and a FEM model of the steel structure, which is beyond the original scope of WP2.1 the data of a ship has been provided which has been used in previous EU funded research projects.

1.3 Results

- The selected designs have been created to reach a suitable degree of detail in order to provide reasonable continuation of the work.
- In particular the ships may form a valid basis for the cost benefit assessment of risk control options in WP7.
- None of the selected designs is a real existing ship, but project designs ready to start detailed engineering and construction. The layout and information allows all kind of investigations for damage stability, however detailed information about internal systems, like piping, ducting and cabling cannot be provided.

1.4 Conclusions and recommendation

- The selection of ships has been based on expert judgment and engineering approach.
- The work to be continued in this project is now based on realistic ship designs so that the results may be directly transferred into actual ship designs.

2 INTRODUCTION

2.1 Task/Sub-task text

A number of sample ships of large cruise vessels and RoPax ferries, will be provided by the FLARE participants to reflect typical designs of the current fleet. As the focus is laid on large ships, the following limits will be applied:

Gross tonnage > 10,000 GT Length > 120m No of MVZ > 2

It is anticipated that all ships comply with the future SOLAS requirements (SOLAS2020). In this respect, RoPax ships do not need to comply with Stockholm Agreement.

For this project the anticipated degree of detail in the information is based on realistic conceptual designs, conceptual GAP and NAPA model. No detailed information about the systems and components is needed, like the routing of pipes, ducts and cables. If for some work in the following work packages more detailed information is needed, suitable assumptions are to be made by the designers in the provision of such information.

The data of ships used as sample ships in this project is to be prepared to be published, so if existing ships are used a written confirmation by the owner/operator and designers is needed for such use.

The sample ships will be used in the other work packages and also as the basis for the impact of any risk control options.

For each ship a separate deliverable will be created containing a description of the ship, including a general arrangement drawing and the NAPA database.

3 STRATEGY TO SELECT SAMPLE SHIPS

The sample ships used in this project are not existing ships but realistic project designs which have never been materialized. The use of existing ships may cause difficulties with sharing the ship specific information due to intellectual property rights. However, as the project designs have been developed ready to be built they reflect the actual state of the art of these kinds of ships.

The quality of the work in this project depends very much on the sample ships selected as the basis. In this context it is important to understand the existing world fleet of cruise ships and RoPax ferries.

The following graphs show the distribution of ships shown as number of passengers versus the Gross Tonnage as documented in the ShipPax database [1]. As the information of persons on board is not available in public accessible databases the number of passengers has been used to illustrate the world fleet.

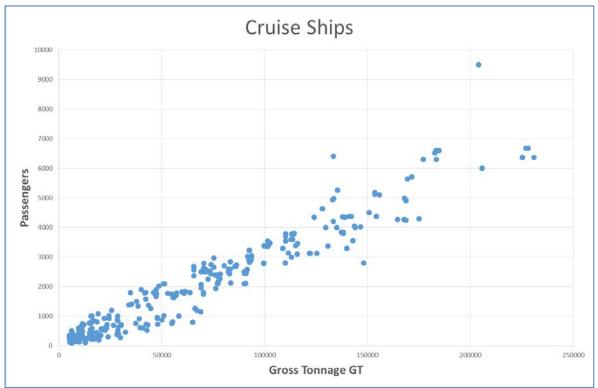


Figure 1 Cruise Ship World Fleet (Source: ShipPax Database)

The distribution of cruise ships is very linear, with increasing number of persons the size of the ship is growing.

To have a suitable sample of this fleet in the project it has been concluded to select 5 ships from approximately 10,000 GT to more than 230,000 GT.

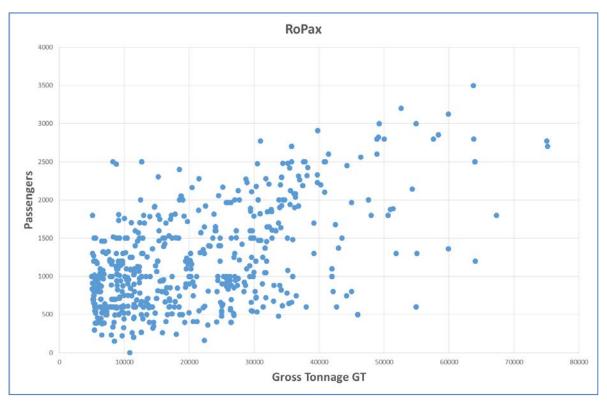


Figure 2 RoPax World Fleet (Source: ShipPax Database)

The distribution of RoPax ferries shows a much greater variety. The reason for this may be different objectives in the design and operation of RoPax ships. Some ships have the focus on cargo transport with a smaller passenger capacity; others are rather designed for a large number of passengers. Another reason may be the specific design of some RoPax ships for one special trade, which may induce design constraints and unusual design concepts.

As the focus in the FLARE project is on the development on measures to enhance safety after flooding these measures may be proven even with a smaller selection of ships.

Therefore only three RoPax ships have been selected between 28,000 GT and 70,000 GT, where the focus is laid on passenger transport.

As the anticipated work in some work packages requires additional information, like a complete finite element model for the assessment of crashworthiness or the effect of operational measures on existing ships information, four additional designs have been provided.

4 CONCLUSIONS AND RECOMMENDATIONS

4.1 Selected ships

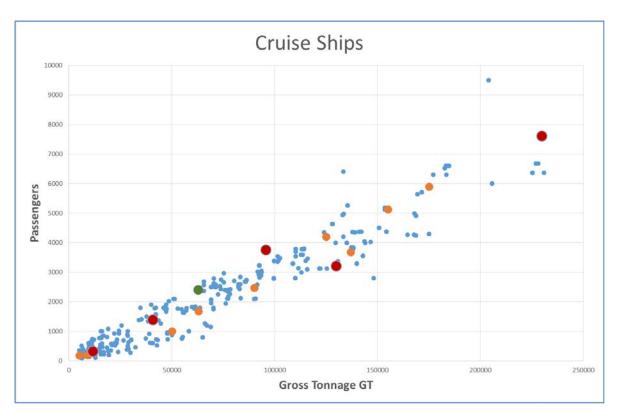
The shipyards involved in this project made proposals for suitable designs of cruise ships and RoPax ferries and out of this set of possible designs the sample ships have been selected.

Sample ship no	Shipyard	Туре	GT	РОВ	Comment
1	MT	Cruise	230,000	10,000	LNG, S2020
2	MW	Cruise	130,000	4,500	LNG, S2020
3	CdA	Cruise	95,900	~3,700	S2009, to be updated for S2020
4	CdA	Cruise	41,000	~1,300	S2009, to be updated for S2020
5	FC	Cruise	11,800	478	EMSA3 [2], S2009, to be updated for S2020
6	MT	RoPax	28,500	2,000	LNG, S2020
7	MW	RoPax	70,000	3,700	GOALDS [3] , S2009, to be updated for S2020
8	FC	RoPax	50,000	2,800	S2009+SA, LNG, to be updated for S2020

Table 1 overview of selected sample ships

All ships are design to comply with the latest SOLAS amendments (SOLAS2020) and due to their size with safe return to port requirements. Half of the ship sample is designed for LNG as primary fuel, while two designs (ship #5 and 7) have been used in earlier research projects. This may allow a transparent view on the development of damage stability requirements from SOLAS2009 via SOLAS2020 to any finding in this project.

The information for following additional designs will be provided on request:



Sample ship no	Shipyard	Туре	Gī	ров	Comment
5a	FC	Cruise	11,800	478	EMSA3, S2009
7a	MW	RoPax	70,000	3,700	GOALDS , S2009
9	MW	Cruise	63,000	2,400	FLOODSTAND [4], extreme Seas [5], S2009

Table 2 Overview of additional designs

With this selection of ships the fleet of cruise ships and RoPax ferries is well represented as shown in the following graphs. The red dots show the final selected designs, while the yellow dots show the available designs. The green dot shows the design #9.

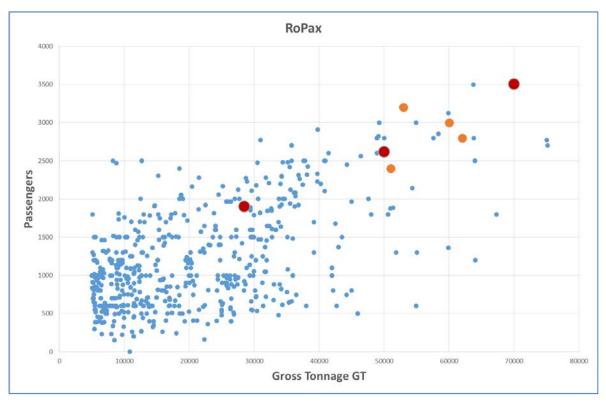


Figure 4 Selected RoPax designs vs world fleet

4.2 Conclusions

A suitable selection of ship designs has been made available for the use in this project. All designs show the current state of the art of its kind of ship and may offer a good possibility to prove the effectiveness of new measures to improve the safety of ships after flooding.

5 REFERENCES

- [1] ShipPax database, 2019
- [2] Odd Olufsen, Risk Acceptance Criteria and Risk Based Damage Stability, Final Report, part 2: Formal Safety Assessment, EMSA/OP/10/2013, Oslo 2015
- [3] George Zaraphonitis, GOALDS Deliverable 6.4 Evaluation of innovative designs, Athens 2012
- [4] Henning Luhmann, FLOODSTAND deliverable D1.1b Concept Ship Design B, Papenburg 2009
- [5] Bettar el Moctar et al, EXTREME SEAS deliverable D4.6-UDE, Report describing the implementation of additional nonlinear contribution in existing time domain seakeeping code and calculation examples, Duisburg 2012

6 **ANNEXES**

The detailed descriptions of the sample ships are shown in the annexes 1-8. The description of the additional sample ship #9 can be found in [4].

The descriptions are also available as independent document for each ship.

Acronym: Project full title: Grant agreement No. Coordinator: FLARE Flooding Accident REsponse 814753 BALance Technology Consulting GmbH

Deliverable 2.1.1

The project has received funding from the European's Horizon 2020 research and innovation programme (Contract No.: 814753)

Deliverable data

Deliverable No	2.1.1
Deliverable Title Sample Ship no 1	
Work Package no: title	WP2.1 Sample Ships

Dissemination level	Public	Deliverable type	Report
Lead beneficiary	MW		
Responsible author	Anna-Lea Routi (N	AT)	
Co-authors	Olli Salmela (MT),	Jussi Blomberg (MT)	
Date of delivery	25-09-2019		
Approved	Name (partner)		Date 25-09-2019
Peer reviewer 1	Henning Luhman	n (MW)	
Peer reviewer 2			

Document history

Version	Date	Description
V01	23.09.2019	Initial version
V02 25.09.2019		Contents ready

The research leading to these results has received funding from the European Union Horizon 2020 Program under grant agreement n° 814753.

This report reflects only the author's view. INEA is not responsible for any use that may be made of the information it contains.

The information contained in this report is subject to change without notice and should not be construed as a commitment by any members of the FLARE Consortium. In the event of any software or algorithms being described in this report, the FLARE Consortium assumes no responsibility for the use or inability to use any of its software or algorithms. The information is provided without any warranty of any kind and the FLARE Consortium expressly disclaims all implied warranties, including but not limited to the implied warranties of merchantability and fitness for a particular use.

© COPYRIGHT 2019 The FLARE consortium

This document may not be copied, reproduced, or modified in whole or in part for any purpose without written permission from the FLARE Consortium. In addition, to such written permission to copy, acknowledgement of the authors of the document and all applicable portions of the copyright notice must be clearly referenced. All rights reserved.

CONTENTS

Li	st of sy	mbols and abbreviations	. 4
1	EXECU	TIVE SUMMARY	. 5
	1.1	Problem definition	5
	1.2	Technical approach and work plan	5
	1.3	Results	5
	1.4	Conclusions and recommendation	5
2	INTE	RODUCTION	. 6
	2.1	Task/Sub-task text	6
3	BUSIN	IESS MODEL	. 7
4	Gener	al Description of the Ship	. 9
	4.1	Regulations	10
	4.2	General Arrangement	10
	4.3	Hullform	13
	4.4	Engine configuration	13
	4.5	Tankplan	14
	4.6	Subdivision	16
5	Hydro	odynamics	18
	5.1	Speed power performance	18
	5.2	Manoeuvrability	19
6	INTAC	T STABILITY	19
	6.1	Loading conditions	19
	6.2	GM Limiting curve	21
7	Resul	ts of damage stability calculation	22
	7.1	Attained index vs R	22
	7.2	Reg 8 results	23
	7.3	Results non-zonal approach	24
8	CONC	CLUSIONS AND RECOMMENDATIONS	24
	8.1	Conclusions	24
R	EFEREN	CES	25
A	DDITIO	NAL INFORMATION	25

List of symbols and abbreviations

- DoADescription of ActionECEuropean CommissionPMTProject Management TeamSGSteering GroupQAQuality AssuranceGTGross TonnageNAPANaval Architectural PackageMVZMain Vertical Zone
- FEM Finite Element Method
- POB Persons On Board

List of figures

Figure 1 Ship profile	10
Figure 2 GAP Decks 10 – 21	11
Figure 3 GAP Decks 1 - 9	12
Figure 4 Bodyplan	13
Figure 5 Tankplan	14
Figure 6 Subdivision used for calculations	17
Figure 7 Speed power (kW) performance with the function of ship's speed (knots)	18
Figure 8 GM limiting curve	21

List of tables

Table 1 Operational profile 7 day eastern Caribbean cruise	8
Table 2 Main dimensions	9
Table 3 Tank capacities	15
Table 4: Loading condition details	20
Table 5: Attained index for each initial condition	22
Table 6: Index according to number of zones	22
Table 7 GM limits for s>0.9 acc. Reg 8.3	23
Table 8 Attained index acc. non-zonal approach	24

1 EXECUTIVE SUMMARY

This report describes sample ship no 1, a large cruise vessel.

1.1 Problem definition

- To ensure realistic research for the response to flooding events it is necessary to have sample ships available, which may be used in other work packages of this project as well as made public available.
- The basic requirements for the sample ship are to reflect large passenger ships design according to the latest SOLAS amendments (SOLAS2020)

1.2 Technical approach and work plan

- A design has been chosen which fulfils the standards of SOLAS 2020.
- To be further future compliant the design is primarily fuelled by liquefied natural gas (LNG).

1.3 Results

- The selected design has been created to reach suitable degree of detail to provide reasonable continuation of the work.
- In particular the ship may form a valid basis for the cost benefit assessment of risk control options in WP7.
- This design is at a pre-contractual stage but ready to for starting detailed engineering and construction. The layout and information allows all kind of investigations for damage stability, however detailed information about internal systems, like piping, ducting and cabling cannot be provided.

1.4 Conclusions and recommendation

• The information provided may form on part of the basic data so that the work can be continued in this project in other work packages.

2 INTRODUCTION

Task/Sub-task text 2.1

A number of sample ships of large cruise vessels and RoPax ferries, will be provided by the FLARE participants to reflect typical designs of the current fleet. As the focus is laid on large ships, the following limits will be applied:

Gross tonnage > 10,000 GT

Length > 120m

No of MVZ > 2

It is anticipated that all ships comply with the future SOLAS requirements (SOLAS2020). In this respect, RoPax ships do not need to comply with Stockholm Agreement.

For this project the anticipated degree of detail in the information is based on realistic conceptual designs, conceptual GAP and NAPA model. No detailed information about the systems and components is needed, like the routing of pipes, ducts and cables. If for some work in the following work packages more detailed information is needed, suitable assumptions are to be made by the designers in the provision of such information.

The data of ships used as sample ships in this project is to be prepared to be published, so if existing ships are used a written confirmation by the owner/operator and designers is needed for such use.

The sample ships will be used in the other work packages and also as the basis for the impact of any risk control options.

For each ship a separate deliverable will be created containing a description of the ship, including a general arrangement drawing and the NAPA database.

3 BUSINESS MODEL

As the basis for the design of this ship a business model has been defined to define the basic parameters which need to be fulfilled. These parameters and the business model will be kept unchanged throughout the design process and also during further design studies during a later stage of this project.

The ship is a large modern cruise vessel with podded propulsion and liquefied natural gas (LNG) as prime fuel (MGO capacity is sufficient as back-up fuel in case no LNG is available).

The ship is designed as a cruise vessel for world-wide operation with a large number of cabins and suitable public rooms, like restaurants, shopping areas, a conference centre, lounges, a spa area and large outside (sun) decks and pool areas. Lanai decks on both sides of the ship are available.

Following main parameters are to be kept to maintain the business model of this vessel:

- 1. Size of the vessel approx. 230,000 GT with 39 GT / lower berth.
- 2. Approx. 2,960 passenger cabins with approx. 59% balcony ratio.
- 3. Approx. 1,180 crew cabins with approx. 2,200 crew berth
- 4. Total number of persons on board 10,000
- 5. Public rooms:
 - a. Lido restaurant 2,800 m²
 - b. Main restaurants 4,000 m²
 - c. 10 special restaurants 500 600 m² each
 - d. Theatre 2,200 m²
 - e. Lounges 1,100 and 1,600 m²
 - f. Several bars 300 500 m²
 - g. Spa & Gym 2,000 m²
 - h. Retail area 1,500 m²
 - i. Casino 2,800 m²
 - j. Lanai decks 5,500 m²
 - k. Kids & teens 500 m²
 - I. Pool & sun deck 13,200 m²
- 6. Crew messes and recreation areas
- 7. Provision rooms, storage rooms and workshops according to ship size
- 8. Restrictions of main dimensions
 - a. Length between perpendiculars < 350m
 - b. Maximum draught \leq 9.2m
- 9. Tank capacities
 - a. Liquefied natural gas 4,300 m³
 - b. Marine gas Oil 2,400 m³
 - c. Potable Water 6,000 m³
- 10. Deadweight at design draught 13,000 t
 - a. 2,000 t liquefied natural gas
 - b. 420 t gas oil
 - c. 3,300 t potable water
 - d. 1000 t treated waste water

- e. 900 t grey water
- f. 600 t heeling water
- g. 200 t lubricating oil
- h. 300 t special tanks
- i. 250 t technical water
- j. 130 t urea solution
- k. 1000 t pool water
- I. 200 t sundrie items
- m. 1,700 t stores and provision
- n. 1,000 t crew and passengers
- 11. Service speed 21.0 knots at 85% propulsion power
- 12. Operational profile: 7 day eastern Caribbean cruise on LNG only

	Time [h]	Speed [kn]
Low Speed	13.0	9.0
Medium Speed	60.0	18.0
High Speed	50.0	21.0
Port	45.0	0.0

 Table 1 Operational profile 7 day eastern Caribbean cruise

4 General Description of the Ship

The ship is a large modern cruise vessel with liquefied natural gas as prime fuel. Capacities are optimized for a 7 day eastern Caribbean cruise with a large number of balcony cabins and suitable public rooms, like restaurants, shopping areas, conference centre, lounges and a spa area. The design is completed by big pool and sun deck areas, making the vessel suitable for worldwide operation.

The propulsion concept is based on triple screw podded propulsion and six dual fuel main engines driving generators. These generators provide the necessary electrical energy for propulsion and the hotel services. The anticipated service speed is with 21.0 kn nowadays relatively high, however the actual service speed may vary with the specific service.

Length over all	Approx. 373 m
Length between perpendiculars	346.50 m
Subdivision length	366.00 m
Breadth	48.00 m
Design draught	8.80 m
Subdivision draught	9.10 m
Height of bulkhead deck	12.40 m
Number of passengers, max.	7,800
Number of crew	2,200
Max. persons on board	10,000
Gross tonnage	230,000
Deadweight	13,000 t
No of cabins	2,960

Main dimensions

Table 2 Main dimensions

4.1 **Regulations**

The design complies with all relevant IMO rules and regulations applicable for ships with contract after 1 January 2020, which includes following codes.

- 1. SOLAS1974 as amended, including probabilistic damage stability and "Safe Return to Port" (SOLAS2020)
- 2. Intact Stability Code (IS Code 2008)
- 3. Load line Convention
- 4. MARPOL, including fuel oil tank protection
- 5. International Code of Safety for Ships Using Gases or Other Low-Flashpoint Fuels (IGF Code)
- 6. Marine Labour Convention 2006

4.2 General Arrangement

The following figures show the General Arrangement plan

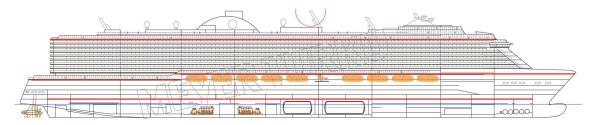


Figure 1 Ship profile

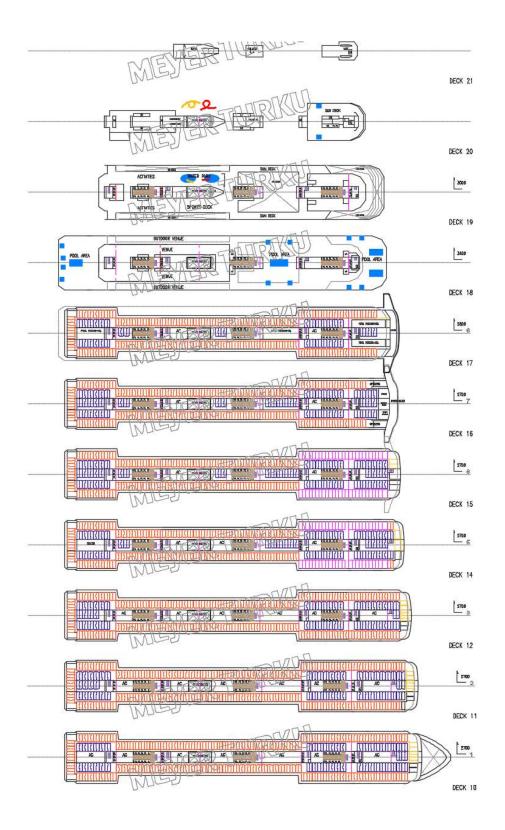


Figure 2 GAP Decks 10 – 21

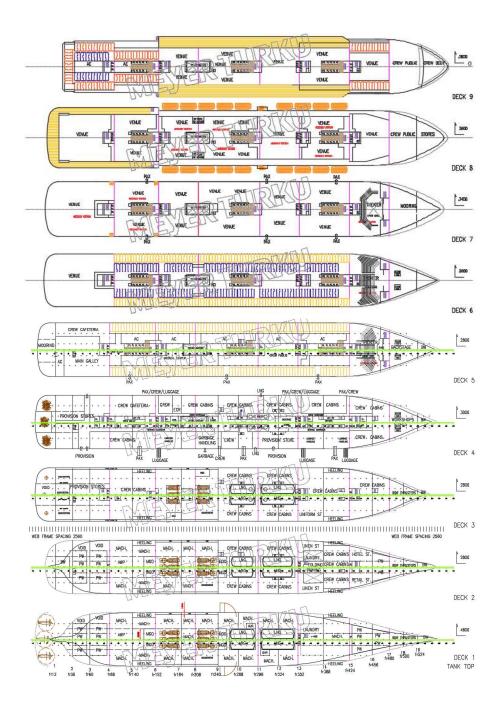
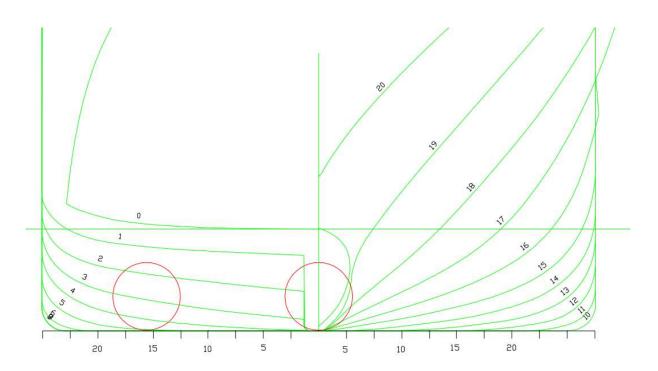



Figure 3 GAP Decks 1 - 9

4.3 Hullform

The ship has a modern hull form with a three-pod propulsion. The bow is of conventional type. The aft hull has a slender skeg and a negative transom.

Figure 4 Bodyplan

4.4 Engine configuration

The engine configuration is based on 6 medium sized dual fuel engines, with total installed power 82 MW. There are 3 engines in the aft main engine room and 3 engines in the forward engine room. All engines are driving a generator set.

4.5 Tankplan

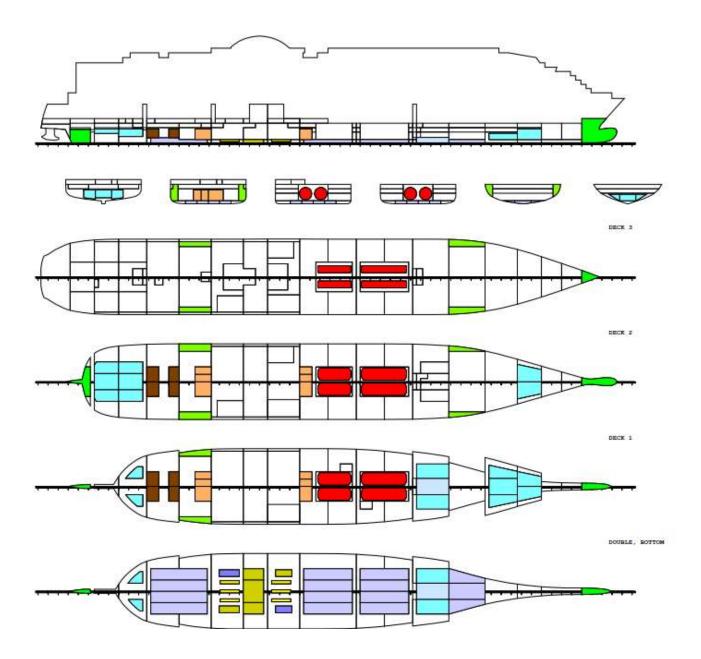


Figure 5 Tankplan

The following capacities are achieved for the various purposes:

	VNET	WEIGHT	LCG	VCG
NAME				
POTABLE WATER	5697.5 m3	5697.5 t	153.50 m	5.98 m
LAUNDRY CLEAN WATER	1039.4 m3	1039.4 t	237.60 m	1.97 m
HEELING WATER	2752.0 m3	2752.0 t	151.10 m	7.88 m
BALLAST WATER	1633.7 m3	1674.6 t	249.80 m	7.82 m
TECHNICAL WATER	913.5 m3	913.5 t	124.20 m	1.00 m
LIQUIFIED NATURAL GAS	4574.5 m3	2150.0 t	193.80 m	6.50 m
GAS OIL	2245.1 m3	1930.8 t	120.10 m	5.40 m
LUBRICATING OIL	350.0 m3	320.0 t	146.70 m	5.00 m
AWP WATER	1453.8 m3	1453.8 t	66.30 m	6.00 m
TREATED + GREY WATER	6448.3 m3	6448.3 t	153.80 m	1.20 m

Table 3 Tank capacities

4.6 Subdivision

The watertight subdivision follows the needs from the functionality of the spaces, e.g. the size of the LNG tanks as well as the size of the main engine rooms.

Due to redundancy requirements as defined in SOLAS II/2 the engine rooms are quite large and cause special attention for the damage stability. Additionally the engine rooms are separated by an extra compartment and protected by a double hull up to the bulkhead deck (deck 4)

The heeling water tanks are located outside the LNG tank areas, for minimising the heel after damage as far as possible. LNG tanks are fully within B/5. No additional damage analysis for LNG tanks according to IGF code is thus necessary.

There are partial bulkheads on the bulkhead deck to extend the watertight compartmentation. Partial bulkheads will be built mainly above the watertight transversal bulkheads located below the bulkhead deck. Two exemptions are located in provision area in aft and above Aft Main Engine Room, where partial watertight bulkheads are missing. Bulkhead deck in these areas is assumed watertight within the worst positive residual range.

Damage hull is extending three decks above the bulkhead deck (decks 4, 5 and 6). Main fire bulkheads are partially watertight up to deck7. Deck 6 between main fire bulkheads on both sides is watertight within the worst positive residual range.

There is a continuous double bottom with a height of at least 2m.

Figure 6 shows the watertight subdivision and the damage zones used in the SOLAS2020 calculation of the attained index.

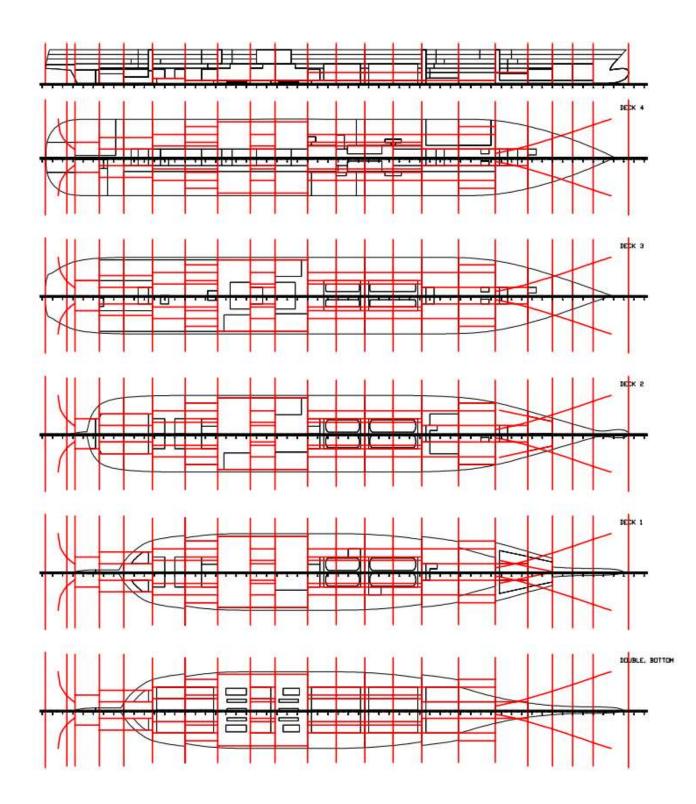
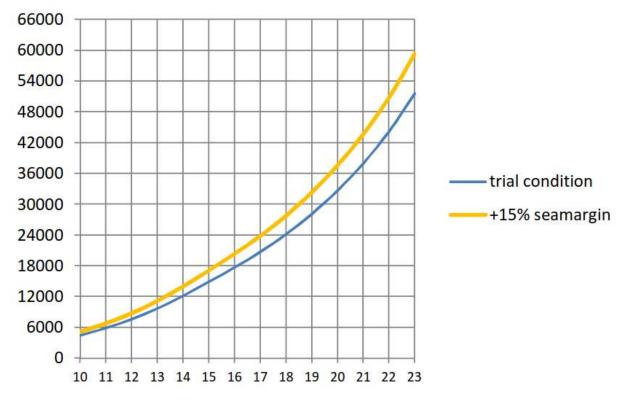



Figure 6 Subdivision used for calculations

5 Hydrodynamics

5.1 Speed power performance

Figure 7 Speed power (kW) performance with the function of ship's speed (knots)

5.2 Manoeuvrability

The ship is equipped with 5 bow thrusters of 4,500 kW each and 3 pods with a total of 55 MW to maintain the required wind speed of 40 kn in the worst direction. For manoeuvring the maximum output of the pods is limited to approx. 10 MW each.

Under the wind speed given above the ship will be able to keep its position without the help of tugs.

6 INTACT STABILITY

6.1 Loading conditions

The table below shows the loading conditions designed for further examination of the sample ship:

NAME	TEXT	DW	FW	BW	GW+TWW	LNG	GO
L2	Design deadweight	13,000 t	3300 t	0 t	1900 t	2000 t	420 t
L3	100% Bunkers, Stores Max Draft	17,453 t	5935 t	0 t	1386 t	2065 t	1890 t
L4	30% Bunkers , Stores	10,445 t	2021 t	300 t	1260 t	630 t	568 t
L5	10% Bunkers , Stores	7434 t	670 t	300 t	782 t	200 t	204 t
L6	10% LNG + 100% MGO, otherwise like L2	12,880 t	3300 t	0 t	1400 t	200 t	1,700 t
L7	10% LNG + MGO, 100% PW, 55% GW+TWW	17,454 t	5837 t	0 t	4336 t	200 t	204 t
L8	20% LNG+MGO, 100 % PW, 20% GW+TWW	15,909 t	5837 t	700 t	1690 t	400 t	404 t
L9	100% LNG+MGO, 20% PW, 55% GW+TWW	16,169 t	1340 t	0 t	3953 t	2107 t	1892 t

NAME	ТЕХТ	Draught	trim/- by stern	GM
L2	Design deadweight	8.80 m	-0.01 m	5.59 m
L3	100% Bunkers, Stores, Max draft	9.10 m	0.01 m	5.89 m
L4	30% Bunkers , Stores	8.62 m	-0.03 m	5.53 m
L5	10% Bunkers , Stores	8.42 m	-0.01 m	5.31 m

L6	10% LNG + 100% MGO, otherwise like L2	8.79 m	0.02 m	5.64 m
L7	10% LNG + 100% MGO, 100%PW, 55% GW+TWW	9.10 m	-0.06 m	6.13 m
L8	20% LNG+MGO, 100 % PW, 20% GW+TWW	9.00 m	0.00 m	5.84 m
L9	100% LNG+MGO, 20% PW, 50% GW+TWW	9.01 m	-0.14 m	6.04 m

Table 4: Loading condition details

6.2 GM Limiting curve

The following diagram shows the summary of the GM requirements together with the actual loading conditions.

There are various limits shown which all need to be complied with, in particular there is the limit of the intact stability criteria as defined by the IS code 2008, and limits for compliance with the damage stability requirements.

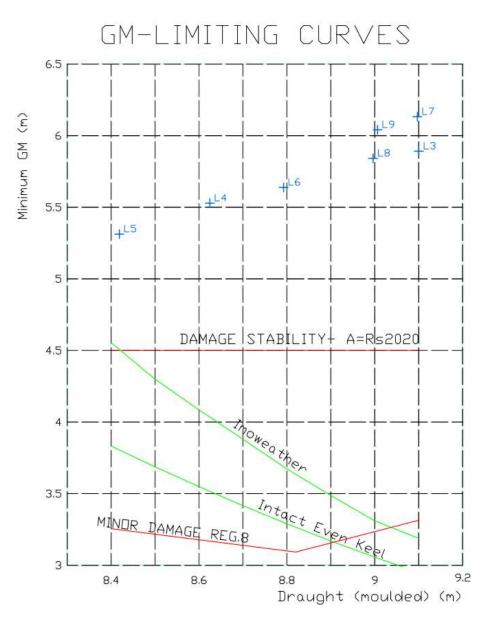


Figure 8 GM limiting curve

7 Results of damage stability calculation

7.1 Attained index vs R

The following tables show the result of the damage stability calculations according SOLAS II-1.

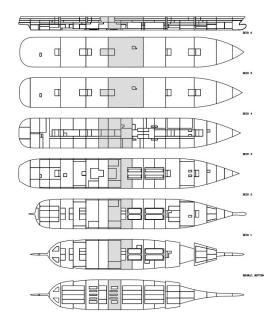
ATTAINED AND REQUIRED SUBDIVISION INDEX

Subdivision length	365.981 m
Breadth at the load line	48.000 m
Number of persons N1	7800
Number of persons N2	2200
Required subdivision index R :	= 0.91730 according to SOLAS 2020
Required subdivision index R =	= 0.89152 according to SOLAS 2009
Attained subdivision index A :	= 0.92401

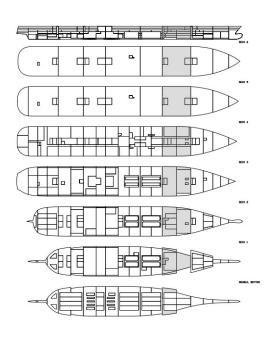
INI	TDAMTAB	Т	GM	A/R	A	A*WCOEF	WCOEF
		m	m				
DL	DAMP	8.400	4.500	1.04	0.92246	0.09225	0.100
DL	DAMS	8.400	4.500	1.05	0.93575	0.09358	0.100
DP	DAMP	8.820	4.500	1.03	0.92146	0.18429	0.200
DP	DAMS	8.820	4.500	1.05	0.93553	0.18711	0.200
DS	DAMP	9.100	4.500	1.02	0.90983	0.18197	0.200
DS	DAMS	9.100	4.500	1.04	0.92411	0.18482	0.200

Table 5: Attained index for each initial condition

DAMAGES	W*P*V*S	W*P*V
1-ZONE DAMAGES	0.36622	0.36622
2-ZONE DAMAGES	0.42202	0.42148
3-ZONE DAMAGES	0.11946	0.11649
4-ZONE DAMAGES	0.02072	0.01981
A-INDEX TOTAL	0.92841	0.92401


Table 6: Index according to number of zones.

7.2 Reg 8 results


Table 7 GM limits for s>0.9 acc. Reg 8.3

The corresponding GM limiting curves is shown in figure 8.

Т	MINGM	MAXKG	DCRI	DAM
8.40	3.25546	26.99015	S-REG8	MP10-11.1.0-1
8.82	3.09240	26.37780	S-REG8	MP10-11.1.0-1
9.10	3.31406	25.70180	S-REG8	MP15-16.1.0

Worst Case MP15-16.1.0

7.3 Results non-zonal approach

In addition to the standard damage stability results the attained index following the non-zonal approach [1] has been calculated for collision, bottom grounding and side grounding/contact.

As the basis the SOLAS parameters for draughts, permeability and s-factor have been used. For each of the three categories of flooding events 50,000 breaches have been created.

Initial condition	Draught	Attained Index Collision	Attained Index Bottom grounding	Attained Index Side grounding/contact
DL	8.400	0.95802	0.92708	0.89358
DP	8.820	0.95066	0.92298	0.88862
DS	9.100	0.94575	0.91934	0.88209

Table 8 Attained index acc. non-zonal approach

8 CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

The information shown in this document and the associated files define a state-of-the-art large cruise vessel using latest knowledge for fulfilling the highest (safety and environmental) standards for passenger vessels.

REFERENCES

[1] Gabriele Bulian et al, Considering collision, bottom grounding and side grounding/contact in a common non-zonal framework, Proceedings of the 17th International Ship Stability Workshop, Helsinki 2019

ADDITIONAL INFORMATION

Following information is available as separated files:

- General Arrangement Drawing (pdf and dwg format)
- Napa data base, including hull form and internal geometry, loading conditions and damage stability data [NAPA db]

Acronym: Project full title: Grant agreement No. Coordinator: FLARE Flooding Accident REsponse 814753 BALance Technology Consulting GmbH

Deliverable 2.1.2

The project has received funding from the European's Horizon 2020 research and innovation programme (Contract No.: 814753)

Deliverable data

Deliverable No	2.1.2		
Deliverable Title	Sample Ship no 2		
Work Package no: title	WP2.1 Sample Ships		
Dissemination level	Public	Deliverable type	Report
Lead beneficiary	MW		
Responsible author	Henning Luhmann		
Co-authors			
Date of delivery	[dd-mm-yyyy]		
Approved	Name (partner)		Date [DD-MM-YYYY]
Peer reviewer 1	Anna-Lea routi (MT)		
Peer reviewer 2			

Document history

Version	Date	Description
V01	08.07.2019	Initial version
V02	14.08.2019	Version for 1st peer review
V03	03.09.2019	Updated version after 1st peer review

The research leading to these results has received funding from the European Union Horizon 2020 Program under grant agreement n° 814753.

This report reflects only the author's view. INEA is not responsible for any use that may be made of the information it contains.

The information contained in this report is subject to change without notice and should not be construed as a commitment by any members of the FLARE Consortium. In the event of any software or algorithms being described in this report, the FLARE Consortium assumes no responsibility for the use or inability to use any of its software or algorithms. The information is provided without any warranty of any kind and the FLARE Consortium expressly disclaims all implied warranties, including but not limited to the implied warranties of merchantability and fitness for a particular use.

© COPYRIGHT 2019 The FLARE consortium

This document may not be copied, reproduced, or modified in whole or in part for any purpose without written permission from the FLARE Consortium. In addition, to such written permission to copy, acknowledgement of the authors of the document and all applicable portions of the copyright notice must be clearly referenced. All rights reserved.

CONTENTS

Li	st of s	symbols and abbreviations	4
1	EX	XECUTIVE SUMMARY	5
	1.1	Problem definition	5
	1.2	Technical approach and work plan	5
	1.3	Results	5
	1.4	Conclusions and recommendation	5
2	IN	NTRODUCTION	
	2.1	Task/Sub-task text	6
3	BL	USINESS MODEL	7
4	G	SENERAL DESCRIPTION OF THE SHIP	
	4.1	Regulations	
	4.2	General Arrangement	
	4.3	Hull form	
	4.4	Engine configuration	
	4.5	Tankplan	14
	4.6	Subdivision	16
5	Η	YDRODYNAMICS	
	5.1	Speed power performance	
	5.2	Manoeuvrability	
6	IN	NTACT STABILITY	
	6.1	Loading conditions	
	6.2	GM Limiting curve	
7	RE	ESULTS OF DAMAGE STABILITY CALCULATION	
	7.1	Attained index vs R	21
	7.2	Reg 8 results	
	7.3	Results non-zonal approach	
8	C	CONCLUSIONS AND RECOMMENDATIONS	
	8.1	Conclusions	
9	RE	EFERENCES	
1(0	ADDITIONAL INFORMATION	

List of symbols and abbreviations

SOLAS	International convention for the Safety of Life at Sea
NAPA	Naval Architectural Package
GT	Gross Tonnage
MVZ	Main Vertical Zone
GM	Metacentric height in meters
DCRI	Damage criterion
R-Index	Required damage stability index acc. SOLAS reg. 7
A-Index	Attained damage stability index acc. SOLAS reg. 7
VNET	Net volume in cubic meters
LCG	Longitudinal center of gravity in meters
VCG	Vertical center of gravity in meters

List of figures

Figure 1 Ship profile	10
Figure 2 GAP Decks 8 - 17	12
Figure 3 GAP Decks 1 - 7	12
Figure 4 Bodyplan	13
Figure 5 Tankplan	14
Figure 6 Subdivision used for calculations	17
Figure 7 Speed power performance	
Figure 8 GM limiting curve	

List of tables

Table 1 Operational profile 7 day eastern Caribbean cruise	8
Table 2 Main dimensions	9
Table 3 Tank capacities	15
Table 4: Loading condition details	19
Table 5: Attained index for each initial condition	21
Table 6: Index according to number of zones	21
Table 7: GM limits for s>0.9 acc. Reg 8.3	22
Table 8 Attained index acc. non-zonal approach	

EXECUTIVE SUMMARY 1

This report describes sample ship no 2, a large cruise vessel.

1.1 Problem definition

- To ensure realistic research for the response to flooding events it is necessary to have sample ships available, which may be used in other work packages of this project as well as made public available.
- The basic requirements for the sample ship are to reflect large passenger ships • design according to the latest SOLAS amendments (SOLAS2020)

1.2 Technical approach and work plan

- A design has been chosen which fulfils the standards of SOLAS 2020.
- To be further future compliant the design is primarily fuelled by liquefied natural gas (LNG).

1.3 Results

- The selected design has been created to reach suitable degree of detail to provide reasonable continuation of the work.
- In particular the ship may form a valid basis for the cost benefit assessment of risk control options in WP7.
- This design is at a pre-contractual stage but ready to start detailed engineering and construction. The layout and information allows all kind of investigations for damage stability, however detailed information about internal systems, like piping, ducting and cabling cannot be provided.

1.4 Conclusions and recommendation

The information provided may form on part of the basic data so that the work can • be continued in this project in other work packages.

2 INTRODUCTION

2.1 Task/Sub-task text

A number of sample ships of large cruise vessels and RoPax ferries, will be provided by the FLARE participants to reflect typical designs of the current fleet. As the focus is laid on large ships, the following limits will be applied:

Gross tonnage > 10,000 GT Length > 120m No of MVZ >2

It is anticipated that all ships comply with the future SOLAS requirements (SOLAS2020). In this respect, RoPax ships do not need to comply with Stockholm Agreement.

For this project the anticipated degree of detail in the information is based on realistic conceptual designs, conceptual GAP and NAPA model. No detailed information about the systems and components is needed, like the routing of pipes, ducts and cables. If for some work in the following work packages more detailed information is needed, suitable assumptions are to be made by the designers in the provision of such information.

The data of ships used as sample ships in this project is to be prepared to be published, so if existing ships are used a written confirmation by the owner/operator and designers is needed for such use.

The sample ships will be used in the other work packages and also as the basis for the impact of any risk control options.

For each ship a separate deliverable will be created containing a description of the ship, including a general arrangement drawing and the NAPA database.

3 BUSINESS MODEL

As the basis for the design of this ship a business model has been defined to define the basic parameters which need to be fulfilled. These parameters and the business model will be kept unchanged throughout the design process and also during further design studies during a later stage of this project.

The ship is a large modern cruise vessel with podded propulsion and liquefied natural gas (LNG) as prime fuel (MGO capacity is sufficient as back-up fuel in case no LNG is available).

The ship is designed as a cruise vessel for world-wide operation with a large number of cabins and suitable public rooms, like restaurants, shopping areas, conference centre, lounges, a spa area and large outside (sun) decks and pool areas. In the centre of the vessel a big atrium is available.

Following main parameters are to be kept to maintain the business model of this vessel:

- 1. Size of the vessel approx. 130,000 GT with > 40 GT / lower berth.
- 2. Approx. 1620 passenger cabins with approx. 88% balcony ratio.
- 3. Approx. 740 crew cabins with approx. 1300 crew berth
- 4. Total number of persons on board 4940
- 5. Public rooms:
 - a. Lido restaurant 1,800 m²
 - b. 8 special restaurants 500 600 m² each
 - c. 1 special restaurant < 100 m²
 - d. Theatre 1,400 m²
 - e. Cinema 70 m²
 - f. Lounge 700 m²
 - g. Bar 1200 m²
 - h. Spa & Gym 1,750 m²
 - i. Retail area 1,000 m²
 - j. Casino 700 m²
 - k. Atrium 4,000 m²
 - I. Kids & teens 375 m²
 - m. Pool & sun deck 10,000 $m^{\rm 2}$
- 6. Crew mess and recreation areas
- 7. Provision rooms, storage rooms and workshops according to ship size
- 8. Restrictions of main dimensions
 - a. Length between perpendiculars < 300m
 - b. Maximum draught ≤ 8.50 m
- 9. Tank capacities
 - a. Liquefied natural gas 2,800 m³
 - b. Marine gas Oil 1,200 m³
 - c. Potable Water 3,300 m³
- 10. Deadweight at design draught 10,200 t
 - a. 1,200 t liquefied natural gas
 - b. 1,000 t gas oil
 - c. 2,700 t potable water

- d. 405 t treated waste water
- e. 650 t grey water
- f. 1,000 t heeling water
- g. 200 t lubricating oil
- h. 250 t special tanks
- i. 200 t technical water
- j. 150 t urea solution
- k. 250 t pool water
- I. 130 t sundrie items
- m. 1,420 t stores and provision
- n. 645 t crew and passengers
- 11. Service speed 22.0 knots at 85% propulsion power
- 12. Operational profile: 7 day eastern Caribbean cruise on LNG only

	Time [h]	Speed [kn]
Low Speed	13.0	9.0
Medium Speed	60.0	18.0
High Speed	50.0	21.0
Port	45.0	0.0

Table 1 Operational profile 7 day eastern Caribbean cruise

4 GENERAL DESCRIPTION OF THE SHIP

The ship is a large modern cruise vessel with liquefied natural gas as prime fuel. Capacities are optimized for a 7 day eastern Caribbean cruise with a large number of balcony cabins and suitable public rooms, like restaurants, shopping areas, conference centre, lounges and a spa area. The design is completed by big pool and sun deck areas, making the vessel suitable for worldwide operation.

The propulsion concept is based on twin screw podded propulsion and 5 dual fuel main engines driving generators. These generators provide the necessary electrical energy for propulsion and the hotel services. The anticipated service speed is with 22.0kn nowadays relatively high, however the actual service speed may vary with the specific service.

Length over all	Approx. 308 m
Length between perpendiculars	299.40 m
Subdivision length	307.711 m
Breadth	39.80 m
Subdivision draught	8.50 m
Height of bulkhead deck	11.80 m
Number of passengers (double occupancy)	3,238
Number of passengers (max.)	3,640
Number of crew	1,300
Max. persons on board	4,940
Gross tonnage	130,000
Deadweight	10,200 t
No of cabins	1,619

Main dimensions

Table 2 Main dimensions

4.1 Regulations

The design complies with all relevant IMO rules and regulations applicable for ships with contract after 1 January 2020, which includes following codes.

- SOLAS1974 as amended, including probabilistic damage stability and "Safe Return to Port" (SOLAS2020)
- 2. Intact Stability Code (IS Code 2008)
- 3. Load line Convention
- 4. MARPOL, including fuel oil tank protection
- 5. International Code of Safety for Ships Using Gases or Other Low-Flashpoint Fuels (IGF Code)
- 6. Marine Labour Convention 2006

4.2 General Arrangement

The following figures show the General Arrangement plan

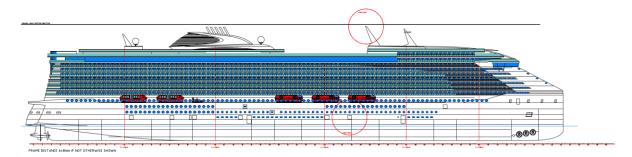


Figure 1 Ship profile

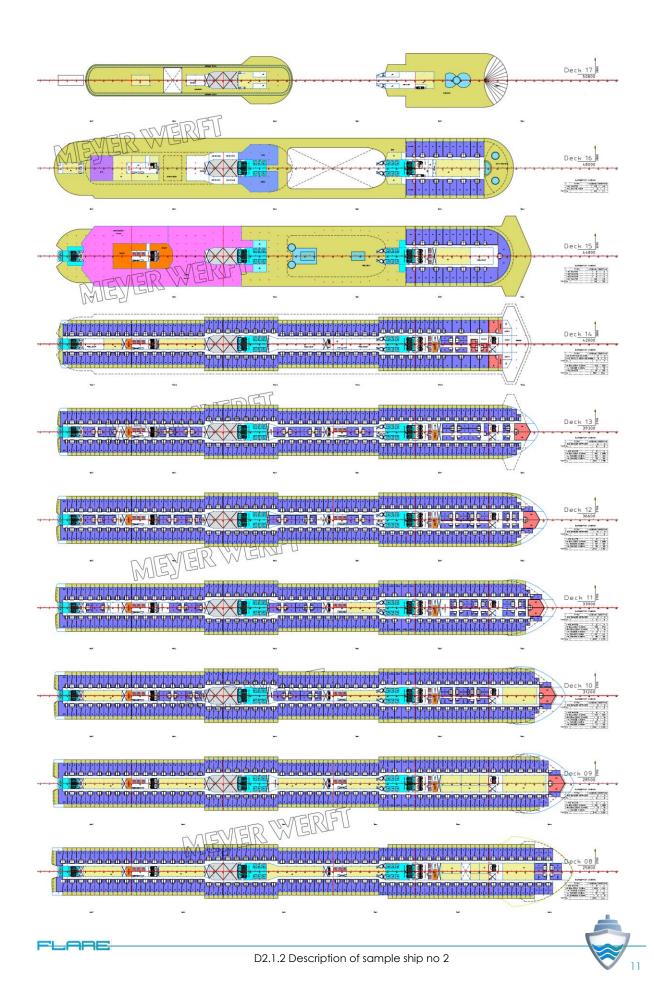


Figure 2 GAP Decks 8 - 17

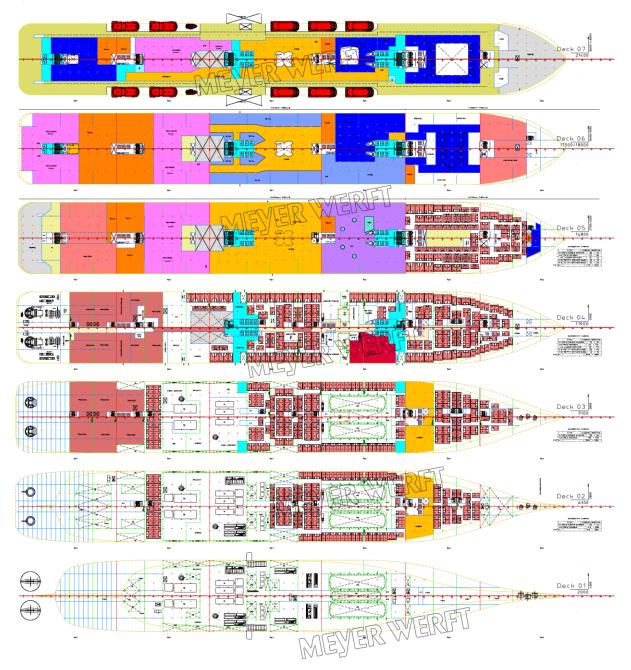


Figure 3 GAP Decks 1 - 7

4.3 Hull form

The ship has a modern hull form of a podded propelled twin screw vessel with a straight bow giving the ship a slender fore body. The aft body is equipped with a slender skeg and transom stern.

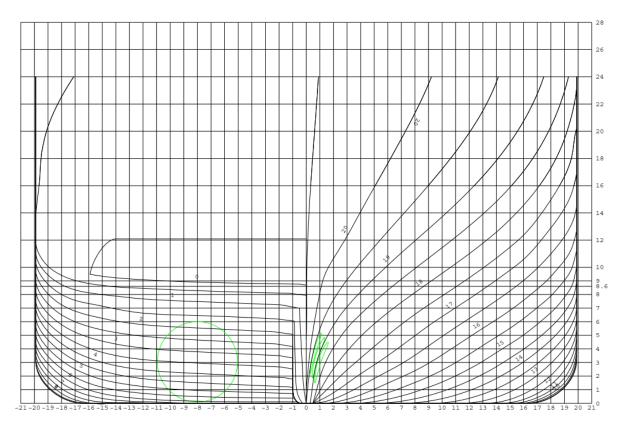


Figure 4 Bodyplan

4.4 Engine configuration

The engine configuration is based on 5 medium sized dual fuel engines. Two bigger ones (approx. 13,800 kW) in the aft main engine room and three smaller ones (approx. 9,150 kW) in the forward main engine room. All engines are driving a generator set.

4.5 Tankplan

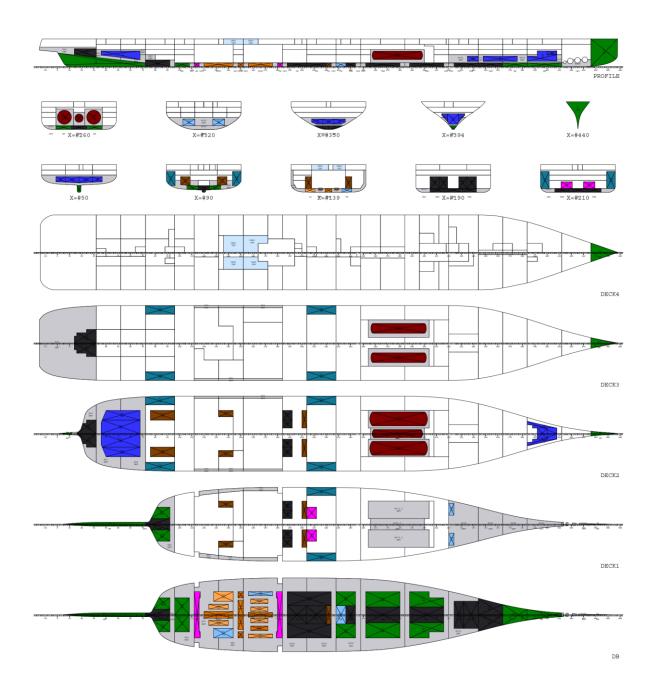


Figure 5 Tankplan

	VNET	WEIGHT	LCG	VCG	MOM
NAME					
POTABLE WATER (PW)	3328.0 m3	3328.0 t	141.16 m	5.68 m	4637 mt
HEELING WATER (HW)	2213.9 m3	2213.9 t	103.64 m	6.95 m	503 mt
BALLAST WATER (BW)	2858.5 m3	2929.9 t	164.80 m	3.20 m	7020 mt
TECHNICAL WATER (TW)	373.9 m3	373.9 t	147.28 m	1.91 m	625 mt
LIQUIFIED NATURAL GAS (LNG)	2884.9 m3	1306.8 t	181.57 m	6.43 m	992 mt
GAS OIL (GO)	1225.1 m3	1078.0 t	87.06 m	5.44 m	767 mt
LUBRICATING OIL (LO)	247.4 m3	222.7 t	96.21 m	1,24 m	168 mt
SPECIAL TANKS (SPEC)	335.4 m3	335.4 t	97.01 m	1,00 m	327 mt
GREY WATER (GW)	1125.7 m3	1125.7 t	137.39 m	3.20 m	2997 mt
TREATED GREY WATER (TWW)	2483.6 m3	2483.6 t	134.48 m	2.42 m	7377 mt

The following capacities are achieved for the various purposes:

Table 3 Tank capacities

4.6 Subdivision

The watertight subdivision follows the needs from the functionality of the spaces, e.g. the size of the LNG tanks as well as the size of the main engine rooms.

Due to redundancy requirements as defined in SOLAS II/2 the engine rooms are quite large and cause special attention for the damage stability. Additionally the engine rooms are separated by an extra compartment and protected by a double hull up to the bulkhead deck (deck 4)

The voids spaces around the LNG tanks are designed in such a way that they are fully redundant. Instantaneous symmetrical flooding is therefore not possible. The heeling water tanks are located outside the LNG tank space, to minimize heel after damage as far as possible. LNG tanks are fully within B/5. No additional damage analysis for LNG tanks according to IGF code is thus necessary.

The bulkhead deck is equipped with partial bulkheads to extend the watertight compartmentation. Any additional progressive flooding above the bulkhead is prevented by watertight racking bulkheads.

The ship is provided with a continuous double bottom with a height of at least 2m.

The figure below shows the watertight subdivision and the damage zones used in the SOLAS2020 calculation of the attained index.

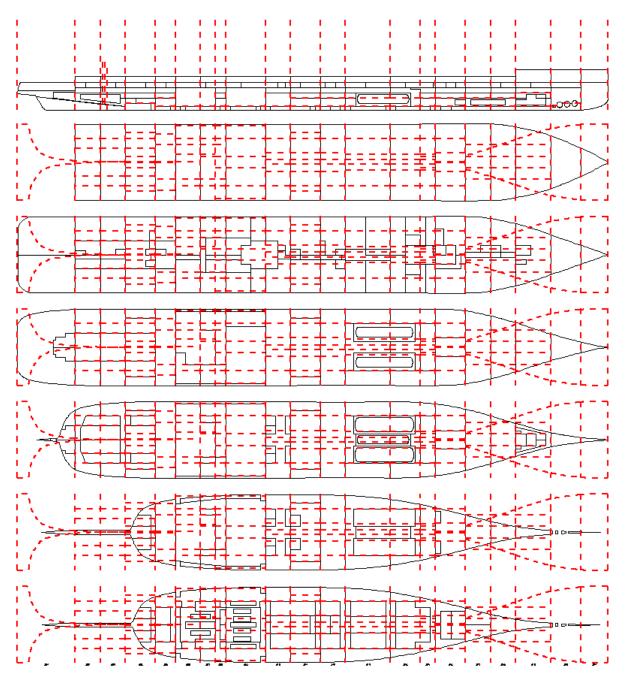


Figure 6 Subdivision used for calculations

5 HYDRODYNAMICS

5.1 Speed power performance

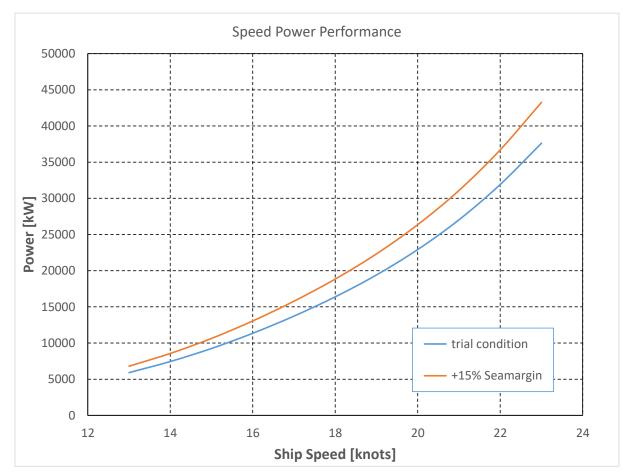


Figure 7 Speed power performance

5.2 Manoeuvrability

The ship is equipped with 3 bow thrusters of 3,000 kW each and two pods with a total of 39 MW to maintain the required wind speed of 27kn in the worst direction. For manoeuvring the maximum output of the pods is limited to approx. 10 MW each.

Under the wind speed given above the ship will be able to keep its position without the help of tugs.

6 INTACT STABILITY

6.1 Loading conditions

The table below shows the loading conditions designed for further examination of the sample ship:

NAME	TEXT	DW	PW	BW	GW	TWW	LNG	GO
LD20	100% consumables, max draught	13,490 t	3,309 t	637 t	839 t	1,986 t	1,242 t	1,025 t
LD25	10% consumables	6,420 t	333 t	385 t	582 t	434 t	131 t	157 t
LD30	Design deadweight	10,200 t	2,700 t	0 t	650 t	405 t	1,200 t	1,000 t
LD31	10% fuel, 100% PW, 100% GW	12,269 t	3,309 t	895 t	907 t	2,472 t	131 t	104 t
LD33	20% fuel, 100% PW, 20% GW	9,673 t	3,309 t	454 t	493 t	497 t	261 t	207 t
LD35	100% fuel, 20% PW, 100% GW	10,642 t	666 t	287 t	907 t	2,472 t	1,242 t	1,025 t

NAME	TEXT	DRAUGHT	TRIM	GM
LD20	100% consumables, max draught	8.49 m	0.00 m	4.63 m
LD25	10% consumables	7.80 m	0.09 m	3.78 m
LD30	Design deadweight	8.17 m	0.04 m	4.13 m
LD31	10% fuel, 100% PW, 100% GW	8.38 m	0.00 m	4.46 m
LD33	20% fuel, 100% PW, 20% GW	8.13 m	0.00 m	4.05 m
LD35	100% fuel, 20% PW, 100% GW	8.22 m	0.00 m	4.28 m

Table 4: Loading condition details

6.2 GM Limiting curve

The following diagram shows the summary of the GM requirements together with the actual loading conditions.

There are various limits shown which all need to be complied with, in particular there is the limit of the intact stability criteria as defined by the IS code 2008, and limits for compliance with the damage stability requirements.

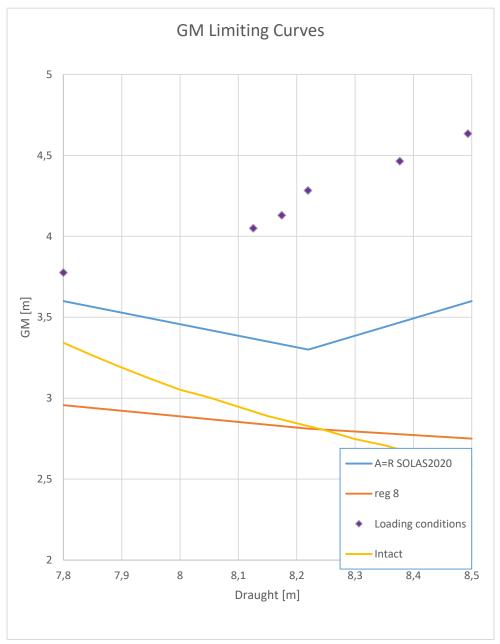


Figure 8 GM limiting curve

7 RESULTS OF DAMAGE STABILITY CALCULATION

7.1 Attained index vs R

The following tables show the result of the damage stability calculations according SOLAS II-1.

ATTAINED AND REQUIRED SUBDIVISION INDEX

Subdivision length307.711 mBreadth at the load line39.800 mNumber of persons N13708Number of persons N21232							
Req	uired su	bdivision in	dex R =	0.893	498 accor	ding to SC	DLAS 2020
Req	uired su	bdivision in	dex R =	0.838	52 accord	ing to SOI	LAS 2009
Att	ained su	bdivision in	dex A =	0.906	68		
INI	TDAMTAB	Т	GM	A/R	A	A*WCOEF	WCOEF
		m	m				
DL	DAMP	7.800	3.602	1.10	0.92569	0.09257	0.100
DL	DAMS	7.800	3.602	1.10	0.92007	0.09201	0.100
DP	DAMP	8.220	3.304	1.08	0.90403	0.18081	0.200
DP	DAMS	8.220	3.304	1.07	0.89461	0.17892	0.200
DS	DAMP	8.500	3.609	1.09	0.91421	0.18284	0.200

8.500 3.609 1.07 0.89768 0.17954

Table 5: Attained index for each initial condition

DAMAGES	W*P*V*S	W*P*V
1-ZONE DAMAGES	0.34243	0.34245
2-ZONE DAMAGES	0.35401	0.36499
3-ZONE DAMAGES	0.16242	0.18390
4-ZONE DAMAGES	0.03855	0.07129
5-ZONE DAMAGES	0.00928	0.01862
A-INDEX TOTAL	0.90668	0.98126

Table 6: Index according to number of zones.

0.200

DS DAMS

7.2 Reg 8 results

Т		MINGM	MAXKG	DCRI	DAM
	7.80 m	2.95718 m	21.4078 m	S-REG8	R8P13-14.1.0-1
	8.22 m	2.81201 m	21.0042 m	S-REG8	R8P13-14.1.0-1
	8.50 m	2.75004 m	20.7641 m	S-REG8	R8P13-14.1.0-1

Table 7: GM limits for s>0.9 acc. Reg 8.3

The corresponding GM limiting curves are shown in figure 8.

7.3 Results non-zonal approach

In addition to the standard damage stability results the attained index following the non-zonal approach [1] has been calculated for collision, bottom grounding and side grounding/contact.

As the basis the SOLAS parameters for draughts, permeability and s-factor have been used. For each of the three categories of flooding events 50,000 breaches have been created.

Initial condition	Draught	Attained Index Collision	Attained Index Bottom grounding	Attained Index Side grounding/contact
DL	7.800 m	0.95736	0.95447	0.91650
DP	8.220 m	0.93160	0.94799	0.89993
DS	8.500 m	0.94018	0.94601	0.90650

Table 8 Attained index acc. non-zonal approach

8 CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

The information shown in this document and the associated files define a state-of-the-art large cruise vessel using latest knowledge for fulfilling the highest (safety and environmental) standards for passenger vessels.

9 REFERENCES

[1] Gabriele Bulian et al, Considering collision, bottom grounding and side grounding/contact in a common non-zonal framework, Proceedings of the 17th International Ship Stability Workshop, Helsinki 2019

10 ADDITIONAL INFORMATION

Following information is available as separated files:

- General Arrangment Drawing (pdf and dwg format)
- Napa data base, including hull form and internal geometry, loading conditions and damage stability data (NAPA db)

Acronym: Project full title: Grant agreement No. Coordinator: FLARE Flooding Accident REsponse 814753 BALance Technology Consulting GmbH

Deliverable 2.1.3

The project has received funding from the European's Horizon 2020 research and innovation programme (Contract No.: 814753)

Deliverable data

Deliverable No	2.1.3
Deliverable Title	Sample Ship No 3
Work Package no: title	WP2.1 Sample Ships

Dissemination level	Public	Deliverable type	Report
Lead beneficiary	CdA		
Responsible author	Rodolphe Bertin		
Co-authors			
Date of delivery	[30-08-2019]		
Approved	FC		Date [DD-MM-YYYY]
Peer reviewer 1	Mike Cardinale		
Peer reviewer 2			

Document history

Version	Date	Description
V00	30.08.2019	Initial version
V01	24.09.2019	Update following FC comments
V02	26.09.2019	Clean version

The research leading to these results has received funding from the European Union Horizon 2020 Program under grant agreement n° 814753.

This report reflects only the author's view. INEA is not responsible for any use that may be made of the information it contains.

The information contained in this report is subject to change without notice and should not be construed as a commitment by any members of the FLARE Consortium. In the event of any software or algorithms being described in this report, the FLARE Consortium assumes no responsibility for the use or inability to use any of its software or algorithms. The information is provided without any warranty of any kind and the FLARE Consortium expressly disclaims all implied warranties, including but not limited to the implied warranties of merchantability and fitness for a particular use.

© COPYRIGHT 2019 The FLARE consortium

This document may not be copied, reproduced, or modified in whole or in part for any purpose without written permission from the FLARE Consortium. In addition, to such written permission to copy, acknowledgement of the authors of the document and all applicable portions of the copyright notice must be clearly referenced. All rights reserved.

CONTENTS

Li	st of	ymbols and abbreviations	1
1	E	ECUTIVE SUMMARY	5
	1.1	Problem definition	5
	1.2	Technical approach and work plan	5
	1.3	Results	5
	1.4	Conclusions and recommendation	5
2	IN	TRODUCTION	5
	2.1	Task/Sub-task text	5
3	B	JSINESS MODEL	5
4	G	eneral Description of the Ship10)
	4.1	Regulations11	J
	4.2	General Arrangement	I
	4.3	Hullform	1
	4.4	Engine configuration14	1
	4.5	Tankplan15	5
	4.6	Subdivision	7
5 Hydrodynamics			
	5.1	Speed power performance18	3
	5.2	Manoeuvrability	?
6 Intact stability		tact stability	?
	6.1	Loading conditions	?
	6.2	GM Limiting curve)
7	R	esults of damage stability calculation21	I
	7.1	Attained index vs R	I
	7.2	Reg 8 results	3
8	С	ONCLUSIONS AND RECOMMENDATIONS	1
	8.1	Conclusions24	1
9	R	FERENCES	5
10	כ	ADDITIONAL INFORMATION	5

List of symbols and abbreviations

- **DoA** Description of Action
- EC European Commission
- PMT Project Management Team
- **SG** Steering Group
- QA Quality Assurance
- GT Gross Tonnage
- NAPA Naval Architectural Package
- MVZ Main Vertical Zone
- FEM Finite Element Method
- POB Persons On Board
- **RPM** Rotation per minute

1 EXECUTIVE SUMMARY

This report describes the sample ship no 3, a large Cruise Ship.

1.1 Problem definition

- To ensure realistic research for the response to flooding events it is necessary to have sample ships available, which may be used in other work packages of this project as well as made public available.
- The basic requirements for the sample ship are to reflect large passenger ships design according to the latest SOLAS amendments (SOLAS2020)

1.2 Technical approach and work plan

- A real existing design has been chosen which has not been used before in similar research project and has not been built.
- The calculation has been performed and it has been possible to reach the SOLAS2020 standard without major modification of the design.
- The addition of a scrubber system to reach the latest requirements of MARPOL Annex VI Regulation 14 would be feasible but has not been included in the scope of this project, as the impact in case of flooding is not considered significant.

1.3 Results

- The selected design has been created to reach suitable degree of detail to provide reasonable continuation of the work.
- In particular the ship may form a valid basis for the cost benefit assessment of risk control options in WP7.
- This design is at a pre-contractual stage but ready to start detailed engineering and construction. The layout and information allows all kind of investigations for damage stability, however detailed information about internal systems, like piping, ducting and cabling cannot be provided.

1.4 Conclusions and recommendation

- The information shown in this document and the associated files define a state-ofthe-art for large cruise vessels intended for 7 to 10 days cruises operation in European waters or Worldwide operation in warm and temperate waters.
- The information provided is a part of the basic data required so that the work can be continued in this project in other work packages.

2 INTRODUCTION

2.1 Task/Sub-task text

A number of sample ships of large cruise vessels and RoPax ferries, will be provided by the FLARE participants to reflect typical designs of the current fleet. As the focus is laid on large ships, the following limits will be applied:

Gross tonnage > 10,000 GT

Length > 120m

No of MVZ >2

It is anticipated that all ships comply with the future SOLAS requirements (SOLAS2020). In this respect, RoPax ships do not need to comply with Stockholm Agreement.

For this project the anticipated degree of detail in the information is based on realistic conceptual designs, conceptual GAP and NAPA model. No detailed information about the systems and components is needed, like the routing of pipes, ducts and cables. If for some work in the following work packages more detailed information is needed, suitable assumptions are to be made by the designers in the provision of such information.

The data of ships used as sample ships in this project is to be prepared to be published, so if existing ships are used a written confirmation by the owner/operator and designers is needed for such use.

The sample ships will be used in the other work packages and also as the basis for the impact of any risk control options.

For each ship a separate deliverable will be created containing a description of the ship, including a general arrangement drawing and the NAPA database.

3 BUSINESS MODEL

As the basis for the design of this ship a business model has been defined to define the basic parameters which need to be fulfilled. These parameters and the business model will be kept unchanged throughout the design process and also during further design studies in a later stage of this project.

The vessel is designed to accommodate on long international voyage 3750 persons, 2750 passengers and 1000 crew members.

The vessel is primarily designed to operate on 7 to 10 days cruises in European waters and has possibility for South America and Caribbean and World wide operation in warm and temperate waters.

The vessel is designed for operation in ports with large tidal range.

The vessel is of adequate overall size (height, hull beam, draught) to pass – non regular transitthrough future Panama locks.

Following main parameters are to be kept to maintain the business model of this vessel:

1. Pax accomodation:

1270 pax cabins with 2540 lower beds and 250 sofa beds for a total of 2790 beds

2. Crew accomodation:

624 crew cabins for a total of 1000 berths

Crew common spaces	Gross Area (sqm)
Coffee House	75
Bar & Disco	180
Crew Gym	120
Internet café / Library	75
Crew retail	15
Training Centre	60
Crew mess	440+180

3. Public rooms:

See the GA for more details. Areas allocated to each main function shall be kept unchanged to keep the business model:

Function indoor	Gross Area (sqm)
activity	4972
bar	3556
Circulation	5636
dining	7817
entertainment	2083
guest service	1859
retail	1822

Function outdoor Gross Area (sqm)	
bar	515
dining	30
outside space	8827

4. Tank capacities

	VOL (m3)
Grey Water	1000
Heavy Fuel Oil	1800
Heeling Tank	1150
Laundry Fresh Water	260
Laundry Grey Water	95
Lubricating Oil	270
Low Sulfure Heavy Fuel Oil	390
Marine Gas Oil	580
Miscellaneous	660
Potable Water	2700
Technical Fresh Water	270
Treated Water/Water Ballast	1080
Water Ballast	3100
Water Treatment	1350

5. Deadweight total 8500t at design draught

Passengers with belongings	300	t
Crew with belongings	100	t
Provisions & hotel stores	400	t
Hotel Stores	180	t
Technical stores	50	t
Potable fresh water	2400	t
Laundry water	250	t
Technical fresh water	50	t
Water mist	45	t
Fuel oil	2160	t
Marine gas oil	300	t
Lub-oil	120	t
Swimming pools	200	t
Heeling tanks	400	t
Grey and black water	760	t
Treated water	760	t
Miscellaneous	25	t

6. Service speed:

In trial conditions the speed is to be at least 22.25 knots, with electric propulsion motors at 100% MCR.

- 7. Design criteria:
 - HFO for 6000 miles at 18 knots with 15% sea margin on power and normal electrical load of abt 7000 kW.
 - MGO or HFO, depending on damage case, for return to port.
 - Fresh water (potable and laundry) for 3 days at 250 l/d/pers
 - Treated water storage for two days : one day in dedicated tank, one day in combined ballast tanks)
- 8. Operational profile: as an average 360 days per year in service, whereof 40% in port and 60% in navigation.

4 General Description of the Ship

This sample ship is a large cruise ship designed to fit brand's philosophy, bring innovations, and deliver ground-breaking tailored vacation experience.

The vessel is designed with six main fire zones.

The public rooms are mainly distributed on decks 5,6,7 and 14,15,16. An Atrium is arranged midship, from deck 3 to 16.

The bulkhead deck is deck 4 in general and may be raised locally at the forward and aft ends as required to meet the stability requirements. Semi watertight bulkheads are arranged above bulkhead deck as required. Arrangement should allow normal operation with watertight doors below bulkhead deck continuously closed at sea.

For compliance with intact stability criteria the superstructure are considered watertight up to deck 7 (three tiers above bulkhead deck).

The assembly stations are on deck 7 on outside deck and inside rooms.

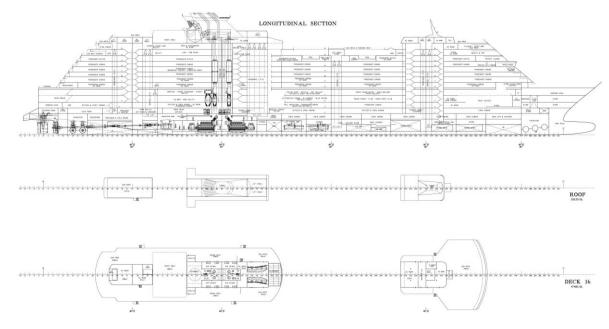
The vessel is powered by a diesel electric power plant driving two shaft lines with rudders. It is equipped with two aft thrusters and three bow thrusters. The total diesel power installed is 50 400 kW about.

Length over all	About 300m
Length between perpendiculars	270.00 m
Subdivision length	296.74 m
Breadth	35.20 m
Subdivision draught	8.20 m
Height of bulkhead deck	11.00 m
Number of passengers	2750
Number of crew	1000
Gross tonnage	95 900
Deadweight	8500 t
No of pax cabins	1270

Main dimensions:

4.1 Regulations

The design complies with all relevant IMO rules and regulations applicable for ships with contract after 1 January 2020, which includes following codes.


- 1. SOLAS1974 as amended, including probabilistic damage stability and "Safe Return to Port" (SOLAS2020)
- 2. Intact Stability Code (IS Code 2008)
- 3. Load line Convention

4. MARPOL, including fuel oil tank protection (scrubber system to be added in order to fulfil the last update of Annex VI Regulation 14)

5. Marine Labour Convention 2006

4.2 General Arrangement

The following figures show the General Arrangement plan

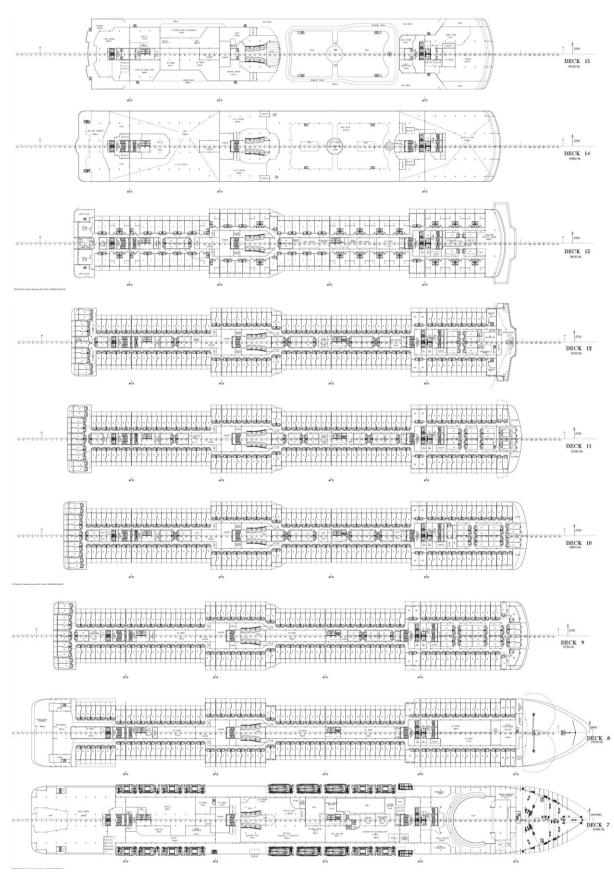


Figure 1 Deck 07 to 15

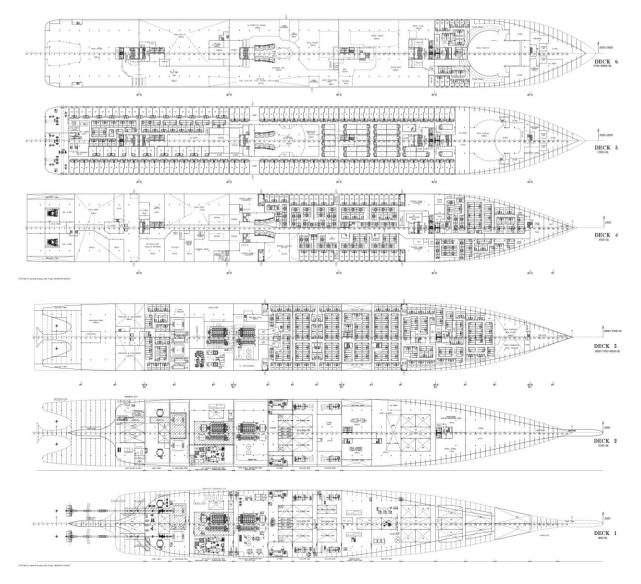


Figure 3 deck 01 to 06

4.3 Hullform

The ship has a conventional modern hull form of a twin screw vessel with bulbous bow and slender skeg and transom stern and a tunnel shaped aft body.

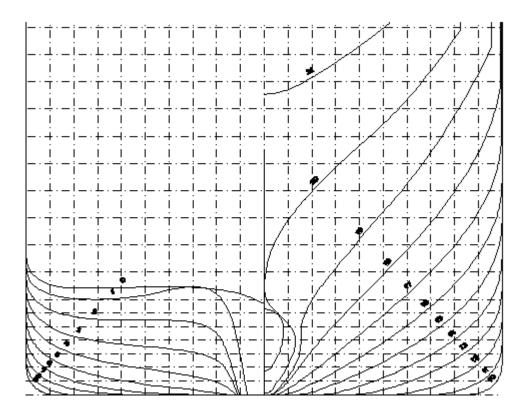


Figure 4 Bodyplan

4.4 Engine configuration

The vessel is propelled by a diesel electric propulsion plant, consisting of four (4) resiliently mounted medium speed main diesel engines, each driving a brushless alternator, producing electrical energy for propulsion and hotel service.

The propulsion system consists of two inboard electric motors at variable speed, each driving a shaft line and pump propeller.

4.5 Tankplan

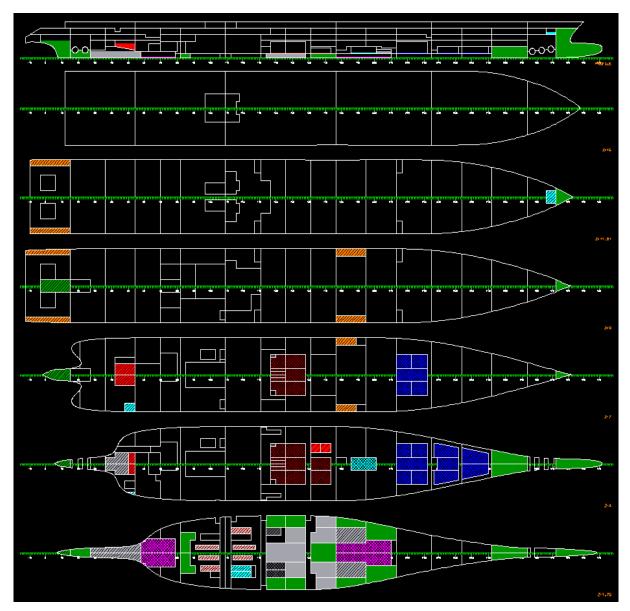


Figure 5 Tankplan

The following capacities are achieved for the various purposes:

NAME	VOLM	VNET
	m3	m3
Grey Water	1049.3	1033.6
Heavy Fuel Oil	1858.6	1830.7
Heeling Tank	1164.6	1147.2
Laundry Fresh Water	268.8	264.8
Laundry Grey Water	96.8	95.3
Lubricating Oil	276	271.8
Low Sulfure Heavy Fuel Oil	393.3	387.4
Marine Gas Oil	580.5	571.8
Miscellaneous	663.8	653.9
Potable Water	2755.3	2714
Technical Fresh Water	270.1	266
Treated Water/Water Ballast	1082.7	1066.5
Water Ballast	3182.8	3135
Water Treatment	1365.1	1344.6

Table 1 Tank capacities

4.6 Subdivision

The watertight subdivision is typical for that ship type. The ship has n.19 watertight compartments but n.24 zones have been defined for the generation of the damage cases. This approach permits to gain index in areas with complex watertight arrangements such as PEM and Main Engine rooms.

The two Propulsion Electric Motors (PEM) are located in the same compartment but one of them is encapsulated to comply with the SRTP requirements.

The ship is provided with a continuous double bottom with a height of more than B/20.

The figure below shows the watertight subdivision and the damage zones used in the SOLAS2020 calculation of the attained index.

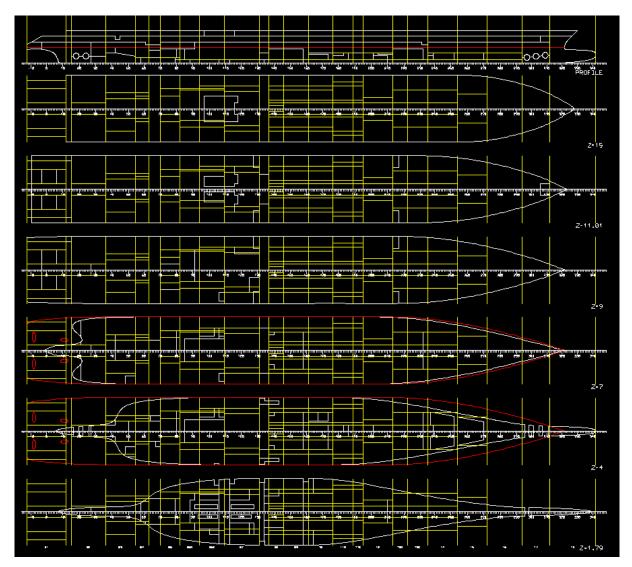


Figure 6: Subdivision used for calculations

5 Hydrodynamics

5.1 Speed power performance

Performance prediction:

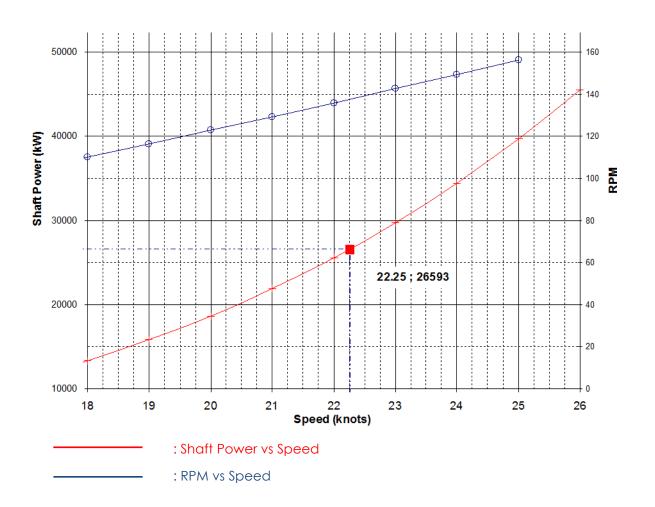


Figure 7: Speed power performance

5.2 Manoeuvrability

The ship is equipped with 3 bow thrusters and two stern thrusters and high lift rudders to sustain the required wind speed in the worst direction.

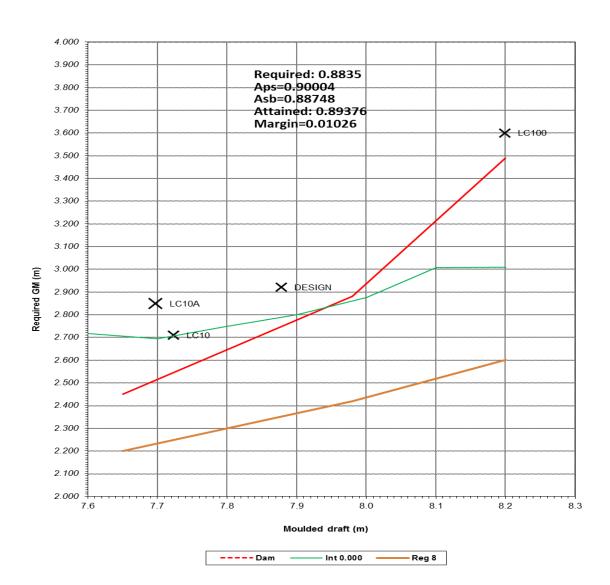
6 Intact stability

6.1 Loading conditions

The table below shows the loading conditions designed for further examination of the sample ship:

CASE	DESCRIPTION					
DESIGN	Design					
LC100	100% consumab	oles				
LC10	10% consumabl	es				
LC10A	10% consumabl	es SWP empt				
CASE		DESIGN	LC100	LC10	LC10A	
Heavy Fuel Oil	 t	1740.3	1740.3	179.4	179.4	
Low Sulfur Hea	vy Fuel Ot	368.3	368.3	38.0	38.0	
Marine Gas-Oil	í t	342.0	498.8	342.0	342.0	
Lub Oil	t	110.4	245.1	110.4	110.4	
Grey Water	t	650.0	1033.6	650.0	650.0	
Laundry Grey W	ater t	50.0	95.3	50.0	50.0	
Treated Water/	Water Balt	760.0	853.2	1066.5	1066.5	
Water Treatmen	t t	60.0	672.3	60.0	60.0	
Potable Water	t	2400.0	2658.5	271.4	271.4	
Laundry Fresh		250.0	264.8	26.5	26.5	
Technical Fres		95.0	186.4	95.0	95.0	
Heeling tank	t	400.0	573.6			
Water ballast	t	0.0	430.0			
Miscellaneous	tank t 	25.0	256.4	25.0	25.0	
DEADWEIGHT	t			7098.8		
LIGHTWEIGHT	t	41502.2	41502.2	41502.2	41502.2	
TOTAL DISPLACE	MENT t	49983.2	52688.6	48601.0	48401.1	
MEAN DRAFT (Be TRIM (Positive TRANSV. METAC. GM (Solid) FS correction GM (Fluid)	by bow) (M)	7.902 -0.139 20.160 3.169 -0.246 2.923	8.222 -0.008 20.124 3.802 -0.199 3.603	2.892	7.720 -0.040 20.034 3.017 -0.168 2.850	

Table 2: Loading condition details



6.2 GM Limiting curve

The following diagram shows the summary of the GM requirements together with the actual loading conditions.

Several limits are shown which all need to be complied with, in particular:

- limit of the intact stability criteria as defined by the IS code 2008
- limits for compliance with the damage stability requirements.

MINIMUM REQUIRED GM DAMAGE STABILITY

Figure 8: GM Limiting curve

ARE

7 Results of damage stability calculation

7.1 Attained index vs R

The following tables show the result of the damage stability calculations according SOLAS II-1.

ATTAINED AND REQUIRED SUBDIVISION INDEX

Subdivision length	296.741 m
Breadth at the load line	35.000 m
Breadth at the bulkhead	deck 35.000 m

Portside:

Required subdivision index	R = 0.88353
Attained subdivision index	A = 0.90004

INIT	DAMTAB	т	TR	GM SUBD	PSI/R	PSI	WCOEF	ASI
		m	m	m	%			
DL	SDSPS	8.200	0.000	3.490 DEFSUBD	112.4	0.91732	0.400	0.36693
PL	SDSPS	7.980	0.000	2.880 DEFSUBD	109.6	0.89499	0.400	0.35799
LL	SDSPS	7.650	0.000	2.450 DEFSUBD	107.3	0.87559	0.200	0.17512
TOTAL	L							0.90004

Starboard:	
Required subdivision index	R = 0.88353
Attained subdivision index	A = 0.88748

INIT	DAMTAB	т	TR	GM SUBD	PSI/R	PSI	WCOEF	ASI
		m	m	m	%			
DL	SDSSB	8.200	0.000	3.490 DEFSUBD	110.4	0.90120	0.400	0.36048
PL	SDSSB	7.980	0.000	2.880 DEFSUBD	108.5	0.88548	0.400	0.35419
LL	SDSSB	7.650	0.000	2.450 DEFSUBD	105.8	0.86403	0.200	0.17281
TOTAL	_							0.88748

Table 3: Attained index for each initial condition

Portside:

DAMAGES	MAX.INDEX	ATT.INDEX
1-ZONE DAMAGES	0.31277	0.31277
2-ZONE DAMAGES	0.37555	0.37555
3-ZONE DAMAGES	0.19472	0.17186
4-ZONE DAMAGES	0.08218	0.03650
5-ZONE DAMAGES	0.02626	0.00336
A-INDEX TOTAL	0.99148	0.90004

Starboard:

DAMAGES	MAX.INDEX	ATT.INDEX
1-ZONE DAMAGES	0.31277	0.31277
2-ZONE DAMAGES	0.37555	0.37555
3-ZONE DAMAGES	0.19472	0.16638
4-ZONE DAMAGES	0.08218	0.03142
5-ZONE DAMAGES	0.02626	0.00134
A-INDEX TOTAL	0.99148	0.88748

Table 4: Index according to number of zones.

7.2 Reg 8 results

Portside:

<u> </u> Zone	NZONE CASE	SFAC
13B/14 13B/14 07/07A/08 07/07A 08/09 08/09 07/07A 07/07A/08 02	2 DL/DMINP19-20.1.0- 2 PL/DMINP19-20.1.0- 3 DL/DMINP10-12.1.0 2 DL/DMINP10-11.1.0 2 DL/DMINP12-13.1.0 2 PL/DMINP12-13.1.0 2 PL/DMINP10-11.1.0 3 PL/DMINP10-12.1.0 1 DL/DMINP3.1.0	

Starboard:

ZONE	NZONE	CASE	SFAC
14/15		DL/DMINS20-21.1.0	0.93635
08/09		DL/DMINS12-13.1.0	0.94918
08/09		PL/DMINS12-13.1.0	0.95360
04A/05		DL/DMINS6-7.1.0	0.96260
04/04A/05		DL/DMINS5-7.1.0	0.96260
03/04		DL/DMINS4-5.1.0	0.96385
03/04/04A		DL/DMINS4-6.1.0	0.96385
07A/08/09		DL/DMINS11-13.1.0	0.96574
07A/08/09		PL/DMINS11-13.1.0	0.96971
14/15		PL/DMINS20-21.1.0	0.97043
06B/07		DL/DMINS9-10.1.0	0.97205
08/09		LL/DMINS12-13.1.0	0.97924
07/07A/08		DL/DMINS10-12.1.0	0.98121
07/07A		DL/DMINS10-11.1.0	0.98121
06B/07		PL/DMINS9-10.1.0	0.98254
04/04A/05		PL/DMINS5-7.1.0	0.98284
04A/05		PL/DMINS6-7.1.0	0.98284
03/04/04A		PL/DMINS4-6.1.0	0.99315
03/04		PL/DMINS4-5.1.0	0.99315
07A/08/09		LL/DMINS11-13.1.0	0.99342
07/07A/08		PL/DMINS10-12.1.0	0.99778
07/07A		PL/DMINS10-11.1.0	0.99778
06B	T	DL/DMINS9.1.0	1.00000

Table 5: GM limits for s>0.9 acc. Reg 8.3

8 CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

The information shown in this document and the associated files define a state-of-the-art for large cruise vessels intended for 7 to 10 days cruises operation in European waters or Worldwide operation in warm and temperate waters.

The information provided is a part of the basic data required so that the work can be continued in this project in other work packages.

9 REFERENCES

- [1] George Zaraphonitis, GOALDS Deliverable 6.4 Evaluation of innovative designs, Athens 2012
- [2] Henning Luhmann, Task 6: Damage Stability Calculations of GOALDS RoPax Designs, EMSA/OP/10/2013, Oslo 2015
- [3] Gabriele Bulian et al, Considering collision, bottom grounding and side grounding/contact in a common non-zonal framework, Proceedings of the 17th International Ship Stability Workshop, Helsinki 2019

10 ADDITIONAL INFORMATION

Following information is available as separated files:

- General Arrangment Drawing (pdf and dwg format)
- Napa data base, including hull form and internal geometry, loading conditions and damage stability data [NAPA db]

Acronym: Project full title: Grant agreement No. Coordinator: FLARE Flooding Accident REsponse 814753 BALance Technology Consulting GmbH

Deliverable 2.1.4

The project has received funding from the European's Horizon 2020 research and innovation programme (Contract No.: 814753)

Deliverable data

Deliverable No	2.1.4						
Deliverable Title	Sample Ship n°4						
Work Package no: title	WP2.1 Sample Ships	WP2.1 Sample Ships					
Dissemination level	Public	Deliverable type	Report				
Lead beneficiary	CdA						
Responsible author	Rodolphe BERTIN						
Co-authors							
Date of delivery	[30-08-2019]						
Approved	Name (partner)		Date [DD-MM-YYYY]				
Peer reviewer 1	Antonio E.Todde		26-09-2019				

Peer reviewer 2

Document history

Version	Date	Description
V00	30.8.2019	Initial version
V01	20.9.2019	Updated according to comments made by FC
V02	26.9.2019	Clean version

The research leading to these results has received funding from the European Union Horizon 2020 Program under grant agreement n° 814753.

This report reflects only the author's view. INEA is not responsible for any use that may be made of the information it contains.

The information contained in this report is subject to change without notice and should not be construed as a commitment by any members of the FLARE Consortium. In the event of any software or algorithms being described in this report, the FLARE Consortium assumes no responsibility for the use or inability to use any of its software or algorithms. The information is provided without any warranty of any kind and the FLARE Consortium expressly disclaims all implied warranties, including but not limited to the implied warranties of merchantability and fitness for a particular use.

© COPYRIGHT 2019 The FLARE consortium

This document may not be copied, reproduced, or modified in whole or in part for any purpose without written permission from the FLARE Consortium. In addition, to such written permission to copy, acknowledgement of the authors of the document and all applicable portions of the copyright notice must be clearly referenced. All rights reserved.

CONTENTS

Lis	st of s	symbols and abbreviations	. 4
1	EX		. 5
	1.1	Problem definition	5
	1.2	Technical approach and work plan	5
	1.3	Results	5
	1.4	Conclusions and recommendation	5
2	IN	ITRODUCTION	. 6
	2.1	Task/Sub-task text	6
3	BL	JSINESS MODEL	. 7
4	G	eneral Description of the Ship	10
	4.1	Regulations	11
	4.2	General Arrangement	11
	4.3	Hullform	14
	4.4	Engine configuration	14
	4.5	Tankplan	15
	4.6	Subdivision	17
5	Hy	ydrodynamics	19
	5.1	Speed power performance	19
	5.2	Manoeuvrability	19
6	In	tact stability	20
	6.1	Loading conditions	20
	6.2	GM Limiting curve	21
7	Re	esults of damage stability calculation	22
	7.1	Attained index vs R	22
	7.2	Reg 8 results	22
8	C	ONCLUSIONS AND RECOMMENDATIONS	23
	8.1	Conclusions	23
9	RE	FERENCES	24
10)	ADDITIONAL INFORMATION	24

List of symbols and abbreviations

- **DoA** Description of Action
- EC European Commission
- PMT Project Management Team
- SG Steering Group
- QA Quality Assurance
- GT Gross Tonnage
- NAPA Naval Architectural Package
- MVZ Main Vertical Zone
- FEM Finte Element Method
- POB Persons On Board

1 EXECUTIVE SUMMARY

This report describes sample ship no 4, a medium size passenger vessel.

1.1 Problem definition

- To ensure realistic research for the response to flooding events it is necessary to have sample ships available, which may be used in other work packages of this project as well as made public available.
- The basic requirements for the sample ship are to reflect large passenger ships design according to the latest SOLAS amendments (SOLAS2020)

1.2 Technical approach and work plan

- A real existing design has been chosen which has not been used before in similar research project and has not been built.
- The original design has been upgraded by modifications of the general arrangement with impact on the weight and CoG to reach the SOLAS2020 standard.
- At the time of the offer, it had been agreed that the vessel would be delivered with scrubbers. However the detailed integration studies had not been performed. It is not considered part of the scope of this project as the impact of this system in case of flooding is not considered significant.

1.3 Results

- The selected design has been created to reach suitable degree of detail to provide reasonable continuation of the work.
- In particular the ship may form a valid basis for the cost benefit assessment of risk control options in WP7.
- This design is at a pre-contractual stage but ready to start detailed engineering and construction. The layout and information allows all kind of investigations for damage stability, however detailed information about internal systems, like piping, ducting and cabling cannot be provided.

1.4 Conclusions and recommendation

- The information shown in this document and the associated files define a state-ofthe-art for medium cruise vessels intended for worldwide operation in warm and temperate waters and it will transit regularly in Panama, Suez and Kiel canal.
- The information provided is a part of the basic data required so that the work can be continued in this project in other work packages.

2 INTRODUCTION

2.1 Task/Sub-task text

A number of sample ships of large cruise vessels and RoPax ferries, will be provided by the FLARE participants to reflect typical designs of the current fleet. As the focus is laid on large ships, the following limits will be applied:

Gross tonnage > 10,000 GT Length > 120m

No of MVZ >2

It is anticipated that all ships comply with the future SOLAS requirements (SOLAS2020). In this respect, RoPax ships do not need to comply with Stockholm Agreement.

For this project the anticipated degree of detail in the information is based on realistic conceptual designs, conceptual GAP and NAPA model. No detailed information about the systems and components is needed, like the routing of pipes, ducts and cables. If for some work in the following work packages more detailed information is needed, suitable assumptions are to be made by the designers in the provision of such information.

The data of ships used as sample ships in this project is to be prepared to be published, so if existing ships are used a written confirmation by the owner/operator and designers is needed for such use.

The sample ships will be used in the other work packages and also as the basis for the impact of any risk control options.

For each ship a separate deliverable will be created containing a description of the ship, including a general arrangement drawing and the NAPA database.

3 BUSINESS MODEL

As the basis for the design of this ship a business model has been defined to define the basic parameters which need to be fulfilled. These parameters and the business model will be kept unchanged throughout the design process and also during further design studies during a later stage of this project.

The ship is a medium modern passenger vessel designed for international voyages. This vessel is designed for 942 passengers and 444 crew members. The ship will operate worldwide in warm and temperate waters and it will transit regularly in Panama, Suez and Kiel canal.

The ship is designed as a passenger cruise ship with a large number of cabins and suitable public rooms, like restaurants, shopping areas, conference centre, lounges and a spa area.

Following main parameters are to be kept to maintain the business model of this vessel:

- Pax accomodation: 424 pax cabins The ship is fitted with 200 additional beds by mean of convertible sofas
- Crew accomodation
 240 officers and crew cabins
- 3. Public rooms on lower decks
 - Supper club 400 m²
 - Indoor restaurant 600 m²
 - 2 speciality restaurants 650 m²
 - Jazz Club 150 m²
 - Spa / Thalasso area 550 m²
 - 2 cinemas (200 seats) 250 m²
 - Theater (160 seats)
 - Explorer Lounge 700 m²
 - Sun deck
 - Cafés and bars
 - Shopping street
 - Reception
 - Casino
- 4. Crew mess and recreation areas deck 3
 - Mess and day room 201 m²
 - Recreation 82 m²
 - Officer Mess 87 m²
 - Officer recreation 43 m²

5. Tank capacities

	•		
-	HFO (incl. settling and service)	850 m3	
-	Marine Gas-Oil (incl. service)	505 m3	
-	Lubricating oil	42 m3	
-	Potable water	844 m3	
-	Laundry fresh water	150 m3	
-	Technical fresh water	150 m3	
-	Heeling tanks	300 m3	
-	Grey water holding	320 m3	
-	Water treatment	500m3	
-	Sea water ballast (as needed f	or stability)	abt. 1500m3
-	Treated water	300 m3	
-	Bilge water	90 m3	
-	Miscellaneous (inc. oil sludge)	150 m3	

6. Deadweight total 3100 t, to be distributed approximately as follows

Passengers & luggage	111 t
Crew& luggage	55.5 t
Provisions	222 †
Hotel & shop stores	115 t
Engines stores	100 †
Miscellaneous items and owners supplies	200 †
Swimming pools and whirlpools	175†
HFO	750 t
Marine Gas Oil	250 t
Lube-oil	40 †
Potable water	300 t
Laundry fresh water	100 †
Technical fresh water	40 †
Heeling tanks	150†
Grey water	100 †
Water treatment	50 t
Treated water	200 †
Miscellaneous	81.5†
Oil sludge	10 t
Bio Sludge	10 t
Bilge water	40 †

FLARE

7. Service speed

The trial speed is 20.0 knots with an average shaft power corresponding to 100 % of nominal propulsion motors output power and with 4.2 megawatts hotel load

- 8. Design criteria
- Fuel oil : The total bunker capacity (HFO, LSHFO, GO, storage and service tanks) is designed for a minimum range of 6000 nautical miles continuous sailing at a speed of 18 knots with 15% sea margin on propulsion power and an auxiliary electric load of 4200 kW.
- Potable water : The potable fresh water capacity is designed for an autonomy of 3 days with a specific consumption of 250 l/day/person and a number of persons on board corresponding to the ship passenger cabins (lower beds) filling.
- Grey water and treated water: Grey water and black water storage tanks are designed for an autonomy of 1 day. The treated water storage tanks are designed for an autonomy of 3 days either in dedicated tanks or in ballast/treated water tanks.
- Heeling tanks: Heeling tanks to compensate a steady lateral wind of 15 m/s (BN 7 abt) when loaded at the design deadweight.
 - Safe return to port: Autonomy for SRTP is from Nemo point to 1500 nm closest land at BF4 using MDO/MGO/HFO.
- 9. Operational profile: as an average 360 days per year in service, whereof 40% in port and 60% in navigation.

4 General Description of the Ship

The vessel is a medium passenger cruise vessel designed for long international voyages. The vessel is designed to operate worldwide in warm and temperate waters (no icing) with regular transit in Panama, Suez and Kiel canal.

The ship is designed as passenger ship with a large number of cabins and suitable public rooms, like restaurants, shopping areas, conference centre, lounges and a spa area.

The passengers embark the vessel on deck 4 on Starboard or Portside.

Secondary access is provided on deck 3 (from tenders).

An atrium is formed from deck 4 up to deck 10.

There are two main vertical passenger circulations with staircases and lifts and two passenger panoramic lifts in the atrium.

Service is done through separate staircases and lifts.

Passengers spaces are located on deck 3,4,5,7,8,9,10 and outdoor deck 11.

Tendering facilities are on deck 3 with one tendering area on each side. The vessel is carrying four tender boats. Assembly stations are located deck 5 on inside deck to the maximum extend and outside rooms if necessary.

Crew spaces are mainly located below passenger decks. Crew public rooms are on deck 3 aft ship.

Bulkhead deck is deck 3.

The vessel is a shafted twin screw diesel electric driven passenger cruise ship. The main machinery consists of four diesel engines each coupled to AC generator.

Length over all	230 m
Length between perpendiculars	199 m
Subdivision length	227.97 m
Breadth	27 m
Subdivision draught	6.10 m
Height of bulkhead deck	11.35 m
Number of passengers	942
Number of crew	444
Gross tonnage	41000
Deadweight	3100 t
No of cabins (pax)	424

Main dimensions

4.1 Regulations

The design complies with all relevant IMO rules and regulations applicable for ships with contract after 1 January 2020, which includes following codes.

- 1. SOLAS1974 as amended, including probabilistic damage stability and "Safe Return to Port" (SOLAS2020), Short international voyage
- 2. Intact Stability Code (IS Code 2008)
- 3. Load line Convention
- 4. MARPOL, including fuel oil tank protection
- 5. Marine Labour Convention 2006

4.2 General Arrangement

The following figures show the General Arrangement plan

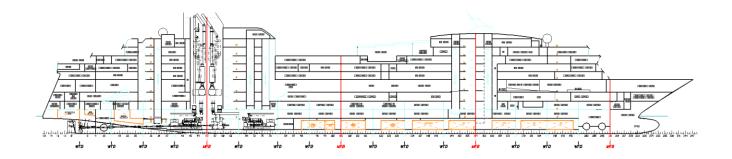


Figure 1 Profile view

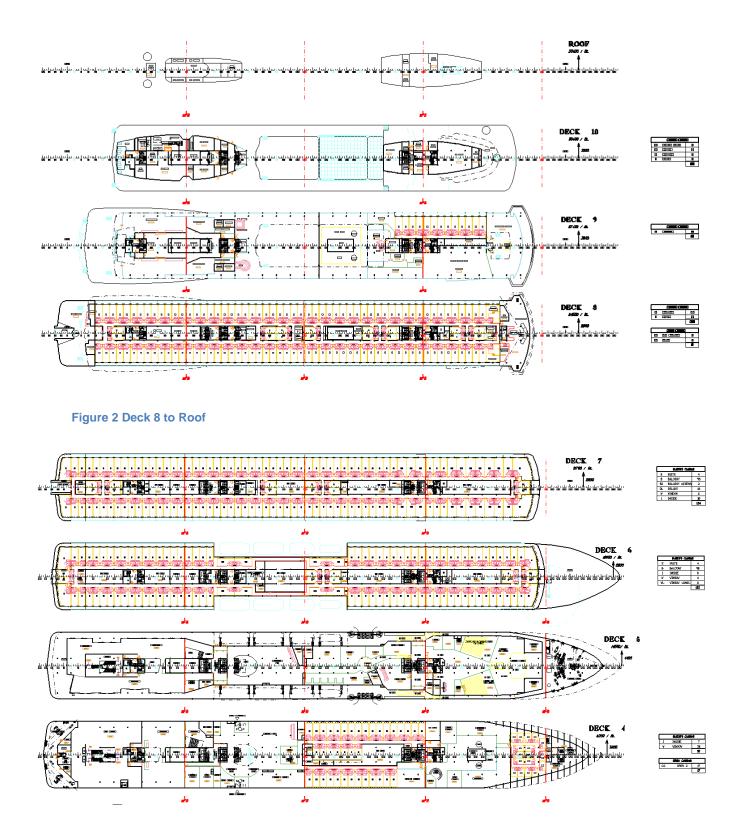


Figure 3 Decks 04 to 07

ARE

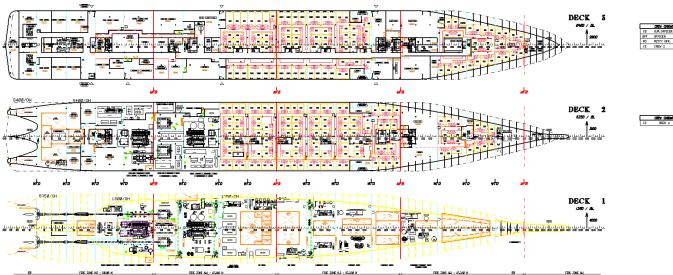


Figure 4 Decks 01 to 03

4.3 Hullform

The ship has a conventional modern hull form of a twin screw vessel with bulbous bow and slender skeg and transom stern.

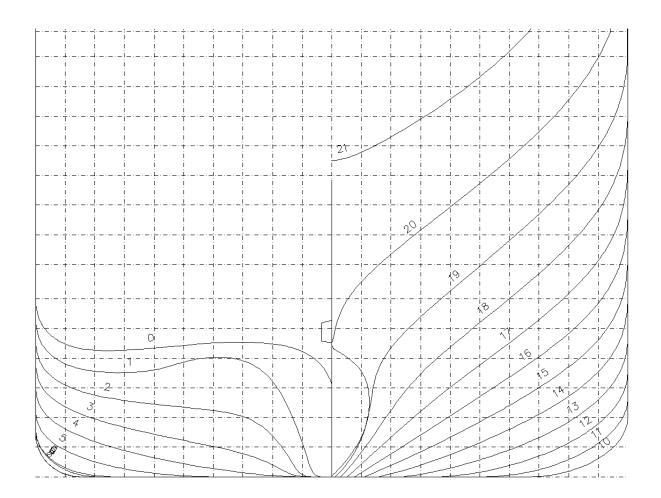


Figure 5 Bodyplan

4.4 Engine configuration

The vessel is propelled by a diesel electric propulsion plant, consisting of four (4) resiliently mounted medium speed main diesel engines, each driving a brushless alternator, producing electrical energy for propulsion and hotel service.

The vessel is a shafted twin screw diesel electric driven passenger cruise ship.

The propulsion system consists of two inboard electric motors at variable speed, each driving a shaft line and pump propeller.

4.5 Tankplan

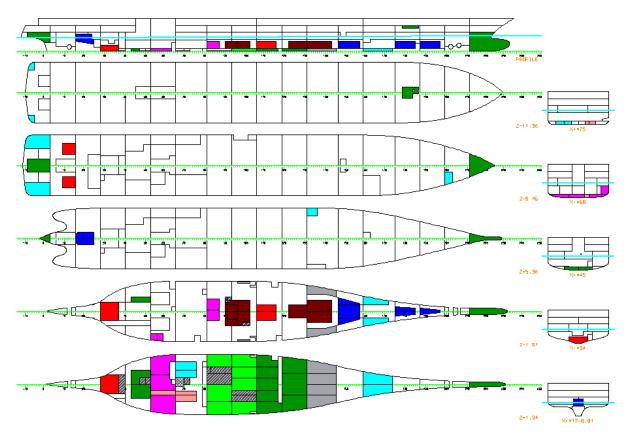


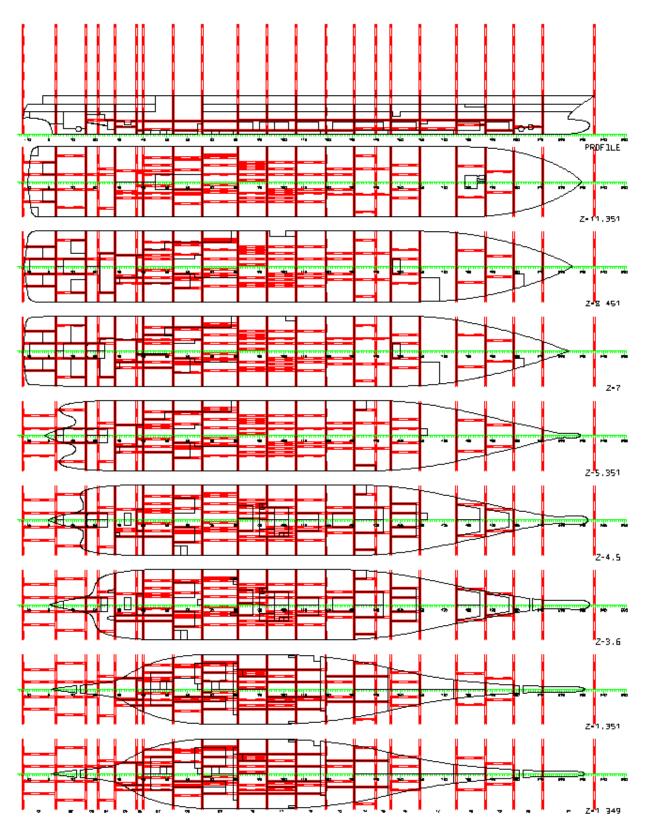
Figure 6 Tankplan

NAME	VNET	WEIGHT
		T
	m3	I
HFO (incl. service and settling)	856.6	822.7
Marine Gas-Oil (incl. service)	536.0	467.5
Lubricating oil	91.1	82.1
Potable water	854.6	854.6
Laundry fresh water	158.4	158.4
Technical fresh water	174.4	174.4
Heeling tanks	354.1	354.1
Grey water	323.3	323.3
Water treatment (incl. Bio sludge)	520	520
Sea water ballast	1253.9	1223.3
Treated water/ Water ballast	588.1	588.1
Bilge Water	90.3	90.3
Miscellaneous	212.5	212.5

Table 1 Tank capacities

4.6 Subdivision

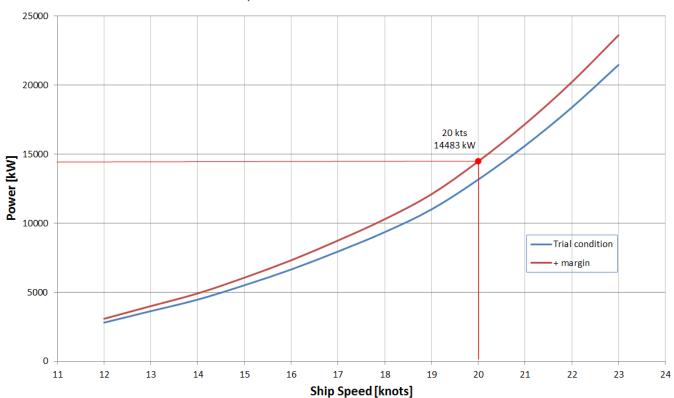
The ship has n.18 watertight compartments but n.21 zones have been defined for the generation of the damage cases. This approach permits to gain index in areas with complex watertight arrangements such as PEM and Main Engine rooms.


No double hull has been provided to protect the main engines but the fore and aft engine rooms are separated by an intermediate watertight compartment, which means that damages of lesser extent do not lead to the loss of both engine rooms.

The two Propulsion Electric Motors (PEM) are located in the same compartment but one of them is encapsulated to comply with the SRTP requirements.

The ship is provided with a continuous double bottom with a height of more than B/20.

The figure below shows the watertight subdivision and the damage zones used in the SOLAS2020 calculation of the attained index.



5 Hydrodynamics

5.1 Speed power performance

The power at contractual speed is 14483kW.

Speed Power Performance

Figure 8: Speed power performance

5.2 Manoeuvrability

The ship is equipped with 2 bow thrusters of 2500 kW each, one stern thrusters and high lift rudders to sustain the required wind speed in the worst direction.

Under the given wind speed the ship will be able to keep its position without the help of tugs.

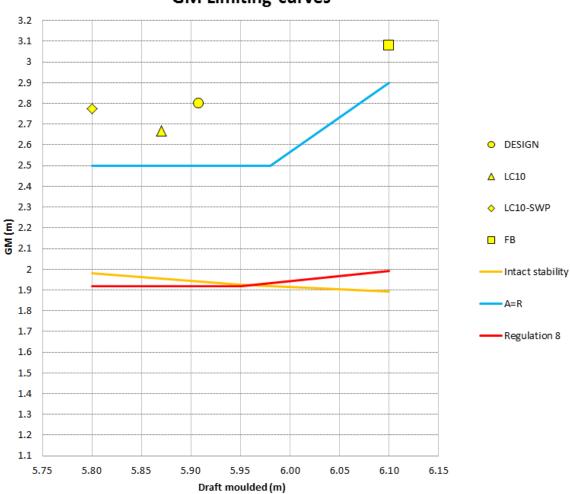
6 Intact stability

6.1 Loading conditions

The table below shows the loading conditions for further examination of the sample ship:

CASE	DESCRIPTI	ION				
DESIGN	10% SUPPL 10% SUPPL CONTRACTL MAX DRAFT	.IES — P≪ JAL DEADW		у		
CASE			LC10	LC10-SWP	DESIGN	FB
Heavy fuel oil	 t		84.1	84.1	750.0	819.3
Low sulfure HFC			0.0	0.0	0.0	0.0
Marine gas oil	t		47.6	47.6	250.0	466.1
Lubricating oil			40.0	40.0	40.0	40.0
Grey water	t		100.0	100.0	100.0	100.0
Laundry grey wa			0.0	0.0	0.0	0.0
Black water	t		0.0	0.0	0.0	0.0
Treated water/B			200.0	200.0	200.0	200.0
Water treatment			60.0	60.0	60.0	60.0
Potable water	t		85.7	85.7	300.0	837.3
Laundry water	t		15.8	15.8	100.0	155.0
Technical water		_	40.0	40.0	40.0	81.0
Heeling tanks	t		177.0	177.0	177.0	177.0
Ballast water	t		867.4	809.0	0.0	0.0
Miscellaneous t		-	104.4	104.4	104.4	104.4
Miscellaneous H	IFO tank t	-	0.0	0.0	0.0	0.0
Miscellaneous M		-	0.0	0.0	0.0	0.0
Swimming pools	(SW) t	=	0.0	0.0	0.0	0.0
Swimming pools	(FW) t	:	0.0	0.0	0.0	0.0
Passengers	t	:	111.0	111.0	111.0	111.0
Crew	t	1	55.5	55.5	55.5	55.5
Provisions	t	Ξ	222.0	222.0	222.0	222.0
Hotel stores	t	-	115.0	115.0	115.0	115.0
Engine store	t	-	100.0	100.0	100.0	100.0
Miscellaneous s	store t	-	200.0	200.0	200.0	200.0
Swimming pool	t	-	175.0	0.0	175.0	175.0
End of life pro	vision t		0.0	0.0	0.0	0.0
JSABLE DEADWEIC	GHT t	:	2800.7	2567.3	3100.0	4018.8
DEADWEIGHT _IGHTWEIGHT 		t t 	2800.7 18346.5	2567.3 18346.5	3100.0 18346.5	4018.8 18346.5
TOTAL DISPLACEM	1ENT 1	t ======	21147.2	20913.8	21446.5	22365.3
MEAN DRAFT (Bel FRIM (Positive FRANSV. METAC. GM (Solid) FS correction GM (Fluid)	by bow) (HEIGHT ((5.866 -0.075 15.502 2.904 -0.191 2.713	5.818 -0.049 15.546 2.997 -0.199 2.799	5.927 -0.119 15.485 3.003 -0.206 2.797	6.118 -0.129 15.384 3.243 -0.168 3.075

Table 2: Loading condition details



6.2 GM Limiting curve

The following diagram shows the summary of the GM requirements together with the actual loading conditions.

Several limits are shown which all need to be complied with, in particular:

- limit of the intact stability criteria as defined by the IS code 2008
- limits for compliance with the damage stability requirements.

GM Limiting curves

Figure 9: GM Limiting curve

7 Results of damage stability calculation

7.1 Attained index vs R

The following tables show the result of the damage stability calculations according SOLAS II-1.

ATTAINED AND REQUIRED SUBDIVISION INDEX Subdivision length 219.139 m Breadth at the load line 27.000 m Breadth at the bulkhead deck 27.000 m Number of persons N 1386 Required subdivision index R = 0.84824Attained subdivision index A = 0.86648WCOEF 0.200 6.100 2.900 1.034 0.86838 0.17368 0.200 5.980 2.500 1.015 0.85246 0.17049 0.200 PL DAMP PL DAMS 5.980 2.500 1.032 0.86721 0.17344 0.200 5.800 2.500 1.048 0.88077 0.08808 0.100 LL DAMP LL DAMS 5.800 2.500 1.056 0.88689 0.08869 0.100 Table 3: Attained index for each initial condition W*P*V*S W*P*V DAMAGES _____ 0.30678 0.30678 1-ZONE DAMAGES 2-ZONE DAMAGES 0.34462 0.34771 3-ZONE DAMAGES 0.15690 0.18941 0.04641 4-ZONE DAMAGES 0.09097 5-ZONE DAMAGES 0.00610 0.04000 0.01727 6-ZONE DAMAGES 0.00052 _____ A-INDEX TOTAL 0.86134 0.99214 _____ Table 4: Index according to number of zones for Portside W*P*V*S W*P*V DAMAGES -----0.30678 1-ZONE DAMAGES 0.30678 2-ZONE DAMAGES 0.34539 0.34771 0.18941 3-ZONE DAMAGES 0.16748 0.04591 0.09097 4-ZONE DAMAGES 5-ZONE DAMAGES 0.00576 0.04000 6-ZONE DAMAGES 0.00029 0.01727 -----A-INDEX TOTAL 0.87162 0.99214 _____

Table 5: Index according to number of zones for Starboard

7.2 Reg 8 results

ZONE	NZONE CASE	SFAC
13/14 13/14 07/08 05/06/07	2 PL/DMINP13-14.1.0 2 LL/DMINP13-14.1.0 2 DL/DMINP7-8.1.0 3 DL/DMINP5-7.1.0	

Table 6: GM limits for s>0.9 acc. Reg 8.3

The corresponding GM limiting curves are shown in figure 7.

8 CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

The information shown in this document and the associated files define a state-of-the-art for medium cruise vessels intended for worldwide operation in warm and temperate waters and it will transit regularly in Panama, Suez and Kiel canal.

The information provided is a part of the basic data required so that the work can be continued in this project in other work packages.

9 REFERENCES

- [1] George Zaraphonitis, GOALDS Deliverable 6.4 Evaluation of innovative designs, Athens 2012
- [2] Henning Luhmann, Task 6: Damage Stability Calculations of GOALDS RoPax Designs, EMSA/OP/10/2013, Oslo 2015
- [3] Gabriele Bulian et al, Considering collision, bottom grounding and side grounding/contact in a common non-zonal framework, Proceedings of the 17th International Ship Stability Workshop, Helsinki 2019

10 ADDITIONAL INFORMATION

Following information is available as separated files:

- General Arrangment Drawing (pdf and dwg format)
- Napa data base, including hull form and internal geometry, loading conditions and damage stability data [NAPA db]

Acronym: Project full title: Grant agreement No. Coordinator: FLARE Flooding Accident REsponse 814753 BALance Technology Consulting GmbH

Deliverable 2.1.5

The project has received funding from the European's Horizon 2020 research and innovation programme (Contract No.: 814753)

Deliverable data

Deliverable No	2.1.5
Deliverable Title	Sample Ship no 5
Work Package no: title	WP2.1 Sample Ships

Dissemination level	Public	Deliverable type	Report
Lead beneficiary	FC		
Responsible author	Mike Cardinale		
Co-authors			
Date of delivery	[dd-mm-yyyy]		
Approved			Date [DD-MM-YYYY]
Peer reviewer 1	Rodolphe Bertin		
Peer reviewer 2			

Document history

Version	Date	Description
V00	01.08.2019	Initial version
V01	10.09.2019	Minor editorial changes and non-zonal approach results added
V02	25.09.2019	Updated version after 1st peer review

The research leading to these results has received funding from the European Union Horizon 2020 Program under grant agreement n° 814753.

This report reflects only the author's view. INEA is not responsible for any use that may be made of the information it contains.

The information contained in this report is subject to change without notice and should not be construed as a commitment by any members of the FLARE Consortium. In the event of any software or algorithms being described in this report, the FLARE Consortium assumes no responsibility for the use or inability to use any of its software or algorithms. The information is provided without any warranty of any kind and the FLARE Consortium expressly disclaims all implied warranties, including but not limited to the implied warranties of merchantability and fitness for a particular use.

© COPYRIGHT 2019 The FLARE consortium

This document may not be copied, reproduced, or modified in whole or in part for any purpose without written permission from the FLARE Consortium. In addition, to such written permission to copy, acknowledgement of the authors of the document and all applicable portions of the copyright notice must be clearly referenced. All rights reserved.

CONTENTS

List	of symbols and abbreviations	4
1	EXECUTIVE SUMMARY	5
1.	.1 Problem definition	5
1.	.2 Technical approach and work plan	5
1.	.3 Results	5
1.	.4 Conclusions and recommendation	5
2	INTRODUCTION	6
2.	.1 Task/Sub-task text	6
3	BUSINESS MODEL	6
4	General Description of the Ship	9
4.	.1 Regulations	10
4.	.2 General Arrangement	10
4.	.3 Hullform	13
4.	.4 Engine configuration	13
4.	.5 Tankplan	14
4.	.6 Subdivision	15
5	Hydrodynamics	17
5.	.1 Speed power performance	17
5.	.2 Manoeuvrability	17
6	Intact stability	18
6.	.1 Loading conditions	18
6.	.2 GM Limiting curve	19
7	Results of damage stability calculation	19
7.	.1 Attained index vs R	19
7.	.2 Reg 8 results	20
7.	.3 Results non-zonal approach	21
8	CONCLUSIONS AND RECOMMENDATIONS	21
8.	.1 Conclusions	21
9	REFERENCES	22
10	ADDITIONAL INFORMATION	22

List of symbols and abbreviations

- **DoA** Description of Action
- EC European Commission
- PMT Project Management Team
- SG Steering Group
- QA Quality Assurance
- GT Gross Tonnage
- NAPA Naval Architectural Package
- MVZ Main Vertical Zone
- FEM Finite Element Method
- POB Persons On Board

1 EXECUTIVE SUMMARY

This report describes sample ship no 5, a small cruise ship.

1.1 Problem definition

- To ensure realistic research for the response to flooding events it is necessary to have sample ships available, which may be used in other work packages of this project as well as made public available.
- The basic requirements for the sample ship are to reflect passenger ships design according to the latest SOLAS amendments (SOLAS2020)

1.2 Technical approach and work plan

- A design has been chosen which has been used in a similar way in the previous research projects EMSA3 [1]
- The original design has been upgraded by modification of internal watertight subdivision to reach the SOLAS2020 standard. Furthermore the GA and the tank plan details have been increased in order to have a more precise business model.
- The rooms arrangement, the openings and the connections have been updated within Napa software taking into account the achievement of eSAFE project [2] regarding the sequence of flooding in particular for the so called A-class bulkheads.

1.3 Results

- The selected design has been created to reach suitable degree of detail to provide reasonable continuation of the work.
- In particular the ship may form a valid basis for the cost benefit assessment of risk control options in WP7.
- This design is at a pre-contractual stage but ready to start detailed engineering and construction. The layout and information allows all kind of investigations for damage stability, however detailed information about internal systems, like piping, ducting and cabling cannot be provided.

1.4 Conclusions and recommendation

• The information provided is a part of the basic data so that the work can be continued in this project in other work packages.

2 INTRODUCTION

2.1 Task/Sub-task text

A number of sample ships of large cruise vessels and RoPax ferries, will be provided by the FLARE participants to reflect typical designs of the current fleet. As the focus is laid on large ships, the following limits will be applied:

Gross tonnage > 10,000 GT

Length > 120m

No of MVZ >2

It is anticipated that all ships comply with the future SOLAS requirements (SOLAS2020).

For this project the anticipated degree of detail in the information is based on realistic conceptual designs, conceptual GAP and NAPA model. No detailed information about the systems and components is needed, like the routing of pipes, ducts and cables. If for some work in the following work packages more detailed information is needed, suitable assumptions are to be made by the designers in the provision of such information.

The data of ships used as sample ships in this project is to be prepared to be published, so if existing ships are used a written confirmation by the owner/operator and designers is needed for such use.

The sample ships will be used in the other work packages and also as the basis for the impact of any risk control options.

For each ship a separate deliverable will be created containing a description of the ship, including a general arrangement drawing and the NAPA database.

3 BUSINESS MODEL

As the basis for the design of this ship a business model has been defined to define the basic parameters which need to be fulfilled. These parameters and the business model will be kept unchanged throughout the design process and also during further design studies in a later stage of this project.

The vessel is designed as a worldwide operating cruise vessel for itineraries of a range 9-21 days.

The cruise ship is oriented for cruises in arctic and antarctic regions. Pax experience is focused on observation and exploration.

The ship is "destination oriented" :

- Main public areas located on upper decks for enhanced observation experience;

- Unique restaurant for full day service;

- Large scenic observation lounges;
- No theatre, no casino, no pool;

Following main parameters are to be kept to maintain the business model of this vessel:

- 1. Number of persons on board: 478 (323 passengers and 155 crew)
- 2. Pax Accomodation as follow:
 - 158 Total pax cabins
 - 316 pax lower berths
 - 7 pax additional berths
 - Outside cabin ratio 100%
 - 4 Suites
 - 4 Window cabins
 - 150 Balcony cabins
 - Balcony cabins ratio (97%)
- 3. Crew accommodation as follow:
 - 81 Total crew cabins
 - 1 Captain Class cabin
 - 1 Senior Officer cabin
 - 11 Officer cabins (single/double)
 - 68 Crew cabins (double/triple/quadruple)
- 4. Space utilization details for public and service spaces :
 - a. One Pax Restaurant with 320 seats and abt.650m2 with integrated galley
 - b. Abt.1400 m² of other internal public spaces
 - c. One Crew Mess with 60 seats
 - d. One Off. Mess with 15 seats
 - e. Abt. 1250 m² of outside public spaces
 - f. One exploration bar
 - g. One Explorer Lounge
 - h. One SPA Area
 - i. One Gym
 - j. One embarkation area to RIBS
 - k. One public area with:
 - Expedition area
 - Conference room
 - o Shop & internet Bar
 - o Hospital
 - I. Abt. 30m2 for pantry
 - m. One main laundry of abt.110m2
 - n. One refrigerated garbage store
 - o. Abt. 310m2 for provisions
 - p. Abt. 320m2 for technical spaces
- 5. 3 pax lifts connecting all passenger decks
- 6. No public spaces below bulkhead deck
- 7. 3 service lifts (all connecting passenger decks e 1 of them connecting laundry also)

- 8. Longitudinal service corridor without any watertight door (or semi-watertight door to be closed during navigation) to connect provision embarkation area, provision stores, and laundry area
- 9. Tank capacities
 - a. Marine Gas Oil 550 m3
 - b. Lube Oil (storage) 28 m3
 - c. Potable water 310 m3
 - d. Heeling water 175 m3 (capacity for compensation of the static heeling angle caused by a wind speed of 43knots)
 - e. Waste water untreated 165 m3
 - f. Waster water treated 270 m3 (including dual purpose ballast/treated)
 - g. Technical water 65 m3
 - h. Water ballast dedicated 300 m3
- 10. Deadweight 1250t at design draught
- 11. One bow thruster and one aft thruster with sufficient power to sustain a transversal wind speed of 13.5m/s
- 12. Fresh water production system capable to produce 140t/day
- 13. Waste water treatment system capable to treat 135m3/day of waste water
- 14. Four Diesel generators
- 15. Propulsion system with two electric motors and shaft lines
- 16. Trial speed of 17knots at contractual draught, calm water, the four engines running at 85% of MCR, 15% of Sea Margin and the Hotel Load required in navigation
- 17. Engine plant capable to deliver the full load (propulsion at service speed and hotel load) with three main engines running on maximum 90% MCR and without sea margin. Each diesel generator capable to cover the Hotel load required in port
- 18. Operational profile: as an average 360 days per year in service, whereof 36% in port and 64% in navigation.

4 General Description of the Ship

This sample ship is a small cruise ship designed for exploration cruises worldwide with capacity of 478 persons on-board.

Life saving appliances are provided for 478 persons on-board for long international voyage. The vessel is a mono hull design with three main vertical zones and watertight subdivision below the bulkhead deck including partial bulkheads on the bulkhead deck.

Passenger cabins are located in three decks, crew cabins are located in five decks.

The vessel has a diesel-electric type propulsion plant located in two watertight compartments. Two electric motors, connected to shaft line, are separated by a longitudinal watertight bulkhead.

Length over all	~128 m
Length between perpendiculars	113.7 m
Subdivision length	125.8 m
Breadth	20.0 m
Subdivision draught	5.3 m
Height of bulkhead deck	7.23 m
Number of passengers	323
Number of crew	155
Gross tonnage	11800 GT
Deadweight	1250 t
No of pax cabins	158
GT/Stateroom	74.7
GT/Lower Bed	37.3
Service speed	16 knots
Trial speed	17 knots
Installed propulsion power	7000 kW
Installed power of main engines	10300 kW

The ship has following main characteristics:

4.1 Regulations

The design complies with all relevant IMO rules and regulations applicable for ships with contract after 1 January 2020, which includes following codes.

- 1. SOLAS1974 as amended, including probabilistic damage stability and "Safe Return to Port" (SOLAS2020)
- 2. Intact Stability Code (IS Code 2008)
- 3. ICE rules (Ice Class 1C)
- 3. Load line Convention
- 4. MARPOL, including fuel oil tank protection

4.2 General Arrangement

The following figures show the General Arrangement plan

Figure 1 Profile view

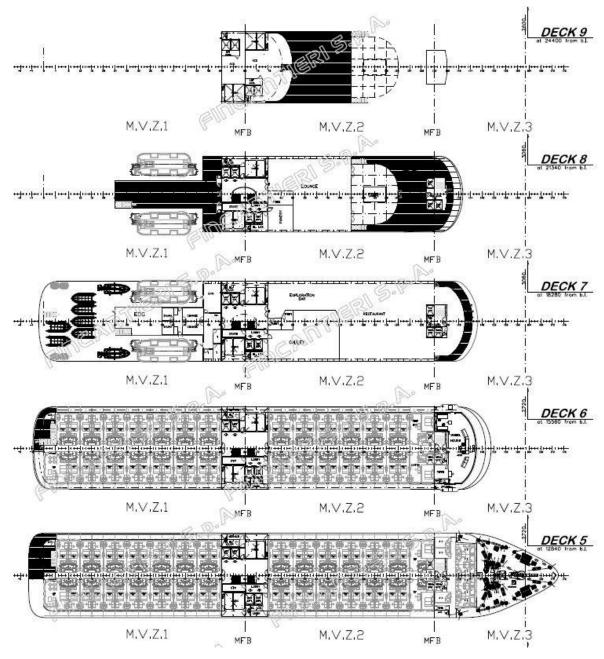


Figure 2 Decks 5 – 9

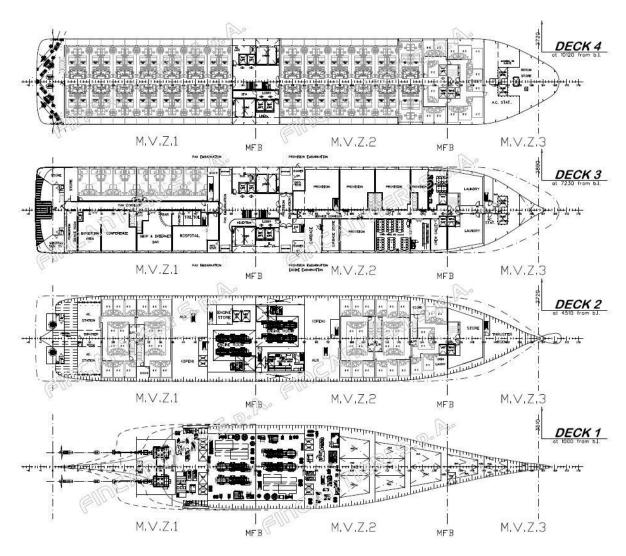


Figure 3 Decks 1 – 4

4.3 Hullform

The ship has a conventional modern hull form of a twin screw vessel with bulbous bow and slender skeg and transom stern.

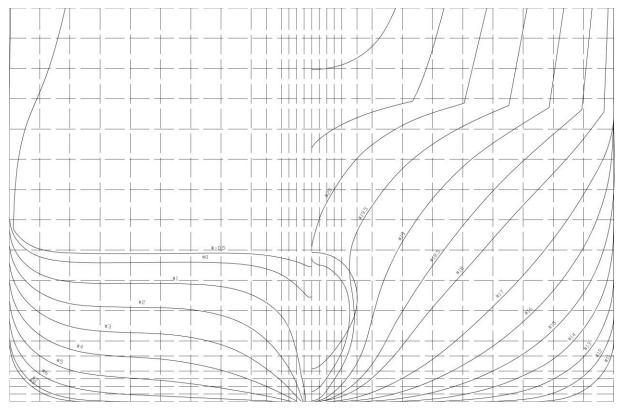


Figure 4 Bodyplan

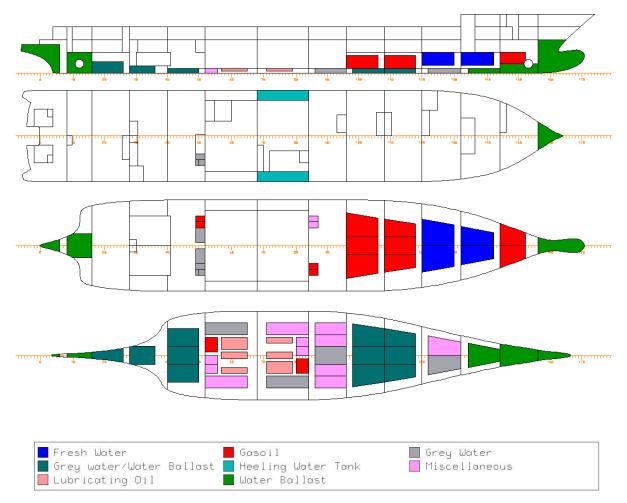
4.4 Engine configuration

The engine configuration is based on a diesel-electric concept with 4 GEN-SETS.

The engine plant is designed to deliver the full load (propulsion at service speed and hotel load) with three main engines running on maximum 90% MCR and without sea margin. The hotel load required in port has to be covered by one engine only.

The Engine plant is based on four Diesel generators of 2575KW each

The anticipated hotel load is 2000 kW in port and 2800Kw in navigation under tropical conditions.


The propulsion system is based on two electric motors 3500KW each and two shaft lines

Scrubbers are not necessary as only MGO is used.

4.5 Tankplan

Figure 5 Tankplan

The following capacities are achieved for the various purposes:

Description	RHO	Volume	Requirement	Delta	Weight
	t/m³	m ³	m³	m³	t
Marine Gas Oil	0.88	590	550	40	519.2
Lube Oil	0.9	29	28	1	26.1
Potable Water	1	315	310	5	315
Heeling Water	1	182	175	7	182
Waste Water untreated	1	167	165	2	167
Waste Water treated	1	289	270	19	289
Technical water	1	71	65	6	71
Water ballast dedicated	1.025	344	300	44	352.6

Table 1 Tank capacities

4.6 Subdivision

The watertight subdivision is typical for that ship type with two very large compartments for the engine rooms due to SRTP requirements. The ship has n.14 watertight compartments but n.17 zones have been defined for the generation of the damage cases. This approach permits to gain index in areas with complex watertight arrangements such as PEM and Main Engine rooms.

In order to improve damage stability results and protect main engines, two void spaces are located on the sides of the engine rooms. These void spaces are connected by double bottom cross flooding to avoid large heeling angles.

The two Propulsion Electric Motors (PEM) are located in the same compartment but they are separated by a longitudinal bulkhead on the centre line to comply with the SRTP requirements. Even in that compartment two void spaces (connected through double bottom) are arranged on the external sides of the PEM rooms. The forward transversal bulkhead of the PEMs compartment is not straight from side to side but it has a recess due to the longitudinal extension of the PEM therefore an additional small zone is used for the damage stability calculation according to SOLAS2020.

In the subdivision table an "UNDAMAGED AREA" has been defined in the central part of the ship. This is used to route pipes generating progressive flooding that may not be controlled by remote control valves.

The ship is provided with a continuous double bottom with a height of more than B/20.

The figure below shows the watertight subdivision and the damage zones used in the SOLAS2020 calculation of the attained index.

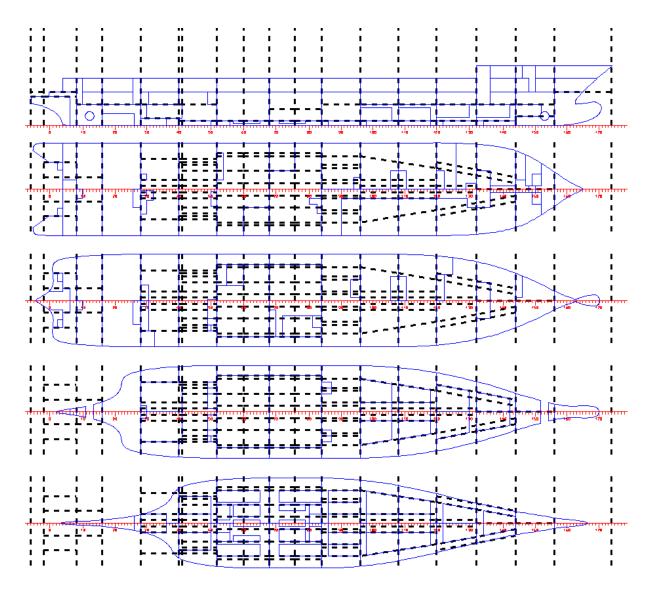


Figure 6: Subdivision used for calculations

5 Hydrodynamics

5.1 Speed power performance

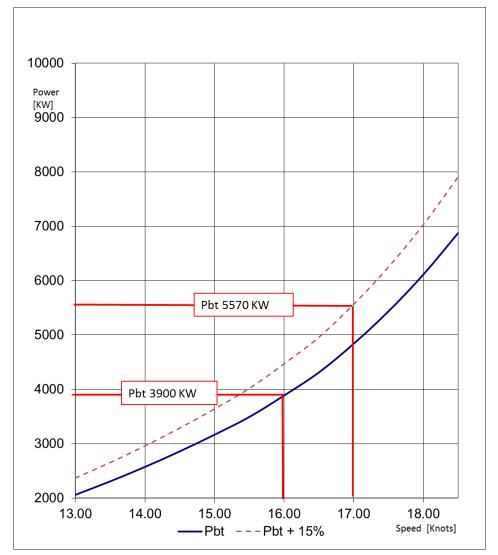


Figure 7: Speed power performance

5.2 Manoeuvrability

The ship is equipped with 1 bow and 1 stern thruster of 1200 kW each in order to sustain a wind speed of 13.5m/s in the transverse direction.

Under the given wind speed the ship will be able to keep its position without the help of tugs (open deep water condition).

6 Intact stability

6.1 Loading conditions

The table below shows the loading conditions designed for further examination of the sample ship:

NAME	TEXT	DW	GO	PW	GW	TGW	WB	SOLID
LD01	Contractual Deadweight	1250†	470 t	210†	100 †	70 †	0†	230 t
LD02	10% consumables	877 †	51 t	32 †	100 t	205 †	202 †	157†
LD03	100% consumables – max draught	1659 t	511†	315†	98 †	241†	0 †	230 t
LD04	ICE condition	1370†	470 †	210†	100 t	70 t	26 †	324†

NAME	TEXT	Draught	Trim (positive by stern)	GM
LD01	Contractual Deadweight	5.09 m	0.03 m	1.40 m
LD02	10% consumables	4.90 m	0.39 m	1.36 m
LD03	100% consumables – max draught	5.30 m	-0.28 m	1.57 m
LD04	ICE condition	5.14 m	0.10 m	1.32 m

Table 2: Loading condition details

6.2 GM Limiting curve

The following diagram shows the summary of the GM requirements together with the actual loading conditions.

There are various limits shown which all need to be complied with, in particular there is the limit of the intact stability criteria as defined by the IS code 2008, and limits for compliance with the damage stability requirements.

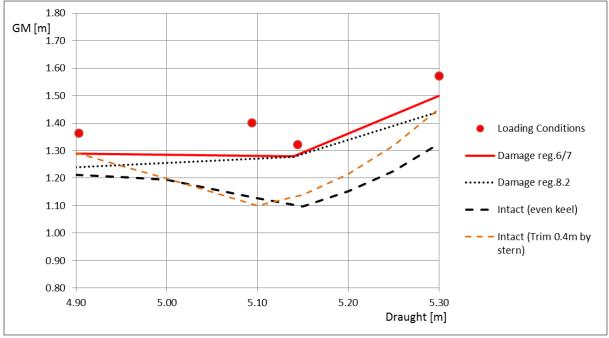


Figure 8: GM Limiting curve

7 Results of damage stability calculation

7.1 Attained index vs R

The following tables show the result of the damage stability calculations according SOLAS II-1.

ATTAINED AND REQUIRED SUBDIVISION INDEX

Subdivision length Breadth at the load line Breadth at the bulkhead deck Number of persons N	125.80 m 20.00 m 20.00 m 478
Required subdivision index	R = 0.73229
Attained subdivision index	A = 0.74361

INIT	SIDE	T	GM	A/R	Α	WCOEF	A*WCOEF
		m	m				
DL	PORT	4.90	1.29	1.04	0.76145	0.1	0.07614
DL	STBD	4.90	1.29	1.04	0.75958	0.1	0.07596
DP	PORT	5.14	1.28	1.00	0.73430	0.2	0.14686
DP	STBD	5.14	1.28	0.99	0.72316	0.2	0.14463
DS	PORT	5.30	1.50	1.03	0.75249	0.2	0.15050
DS	STBD	5.30	1.50	1.02	0.74756	0.2	0.14951

Table 3: Attained index for each initial condition

DAMAGES	W*P*V*S	W*P*V
1-ZONE DAMAGES	0.33485	0.33486
2-ZONE DAMAGES	0.33327	0.37156
3-ZONE DAMAGES	0.07312	0.17117
4-ZONE DAMAGES	0.00237	0.06285
5-ZONE DAMAGES	0.00000	0.02218
A-INDEX	0.74361	0.96262

Table 4: Index according to number of zones.

7.2 Reg 8 results

Т	MINGM	MAXKG	DCRI	DAM
m	m	m		
4.900	1.239	9.742	R8.2-3	SDSR8.2P7-8.1.0
5.140	1.268	9.543	R8.2-3	SDSR8.2P3-4.1.0
5.300	1.441	9.218	R8.2-3	SDSR8.2P3-4.1.0

Table 5: GM limits for s>0.9 acc. Reg 8.2-3

The corresponding GM limiting curves are shown in figure 8.

7.3 Results non-zonal approach

In addition to the standard damage stability results the attained index following the non-zonal approach [3] has been calculated for collision, bottom grounding and side grounding/contact.

As the basis the SOLAS parameters for draughts, permeability and s-factor have been used. For each of the three categories of flooding events 50,000 breaches have been created. Then damage cases to be calculated and associated probabilities are obtained by grouping breaches leading to the same sets of flooded compartments.

The table below shows the number of damage cases that have been calculated and the results obtained for each draught:

Collision			
INIT	T	N.	ASI
	m	Dam	AJI
DL	4.90	5742	0.7877
DP	5.14	5708	0.7642
DS	5.30	5710	0.7986

Side Grounding			
INIT	T	N.	ASI
	m Dam	AJI	
DL	4.90	2758	0.8499
DP	5.14	2751	0.8477
DS	5.30	2839	0.8740

Bottom Grounding				
INIT	T	N.	ASI	
	m	Dam	ASI	
DL	4.90	9224	0.9047	
DP	5.14	9416	0.8917	
DS	5.30	9244	0.8943	

Table 6: Non-zonal approach results

8 CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

The information shown in this document and the associated files define a state-of-the-art for small cruise vessels intended for expedition in arctic and antarctic regions, the market for this ship had a rapid growth during last years.

9 REFERENCES

- [1] Dimitris Konovessis et al, Risk Acceptance Criteria and Risk Based Damage Stability, Final Report, part 2: Formal Safety Assessment, EMSA/OP/10/2013, Oslo 2015
- [2] Henning Luhmann et al, eSAFE A joint industry project on Damage Stability for Cruise Ships - Executive Summary, Oslo 2018é
- [3] Gabriele Bulian et al, Considering collision, bottom grounding and side grounding/contact in a common non-zonal framework, Proceedings of the 17th International Ship Stability Workshop, Helsinki 2019

10 ADDITIONAL INFORMATION

Following information is available as separated files:

- General Arrangment Drawing (pdf and dxf format)
- Napa data base, including hull form and internal geometry, loading conditions and damage stability data [NAPA db]

Acronym: Project full title: Grant agreement No. Coordinator: FLARE Flooding Accident REsponse 814753 BALance Technology Consulting GmbH

Deliverable 2.1.6

The project has received funding from the European's Horizon 2020 research and innovation programme (Contract No.: 814753)

Deliverable data

Deliverable No	2.1.6
Deliverable Title	Sample Ship no 6
Work Package no: title	WP2.1 Sample Ships

Dissemination level	Public	Deliverable type	Report
Lead beneficiary	MT		
Responsible author	Juha Kujanpää		
Co-authors			
Date of delivery	[29-09-2019]		
Approved	Name (partner)		Date [DD-MM-YYYY]
Peer reviewer 1	Henning Luhmann (MW))	[2019-09-30]
Peer reviewer 2			

Document history

Version	Date	Description
V01	29.9.2019	Initial version
V02	30.09.2019	Corrections after review

The research leading to these results has received funding from the European Union Horizon 2020 Program under grant agreement n° 814753.

This report reflects only the author's view. INEA is not responsible for any use that may be made of the information it contains.

The information contained in this report is subject to change without notice and should not be construed as a commitment by any members of the FLARE Consortium. In the event of any software or algorithms being described in this report, the FLARE Consortium assumes no responsibility for the use or inability to use any of its software or algorithms. The information is provided without any warranty of any kind and the FLARE Consortium expressly disclaims all implied warranties, including but not limited to the implied warranties of merchantability and fitness for a particular use.

© COPYRIGHT 2019 The FLARE consortium

This document may not be copied, reproduced, or modified in whole or in part for any purpose without written permission from the FLARE Consortium. In addition, to such written permission to copy, acknowledgement of the authors of the document and all applicable portions of the copyright notice must be clearly referenced. All rights reserved.

CONTENTS

Lis	List of symbols and abbreviations				
1	EXE	CUTIVE SUMMARY	. 5		
	1.1	Problem definition	5		
	1.2	Technical approach and work plan	5		
	1.3	Results	5		
	1.4	Conclusions and recommendation	5		
2	INT	RODUCTION	. 6		
	2.1	Task/Sub-task text	6		
3	BUS	SINESS MODEL	. 7		
4	Ge	neral Description of the Ship	. 9		
	4.1	Regulations	10		
	4.2	General Arrangement	10		
	4.3	Hullform	13		
	4.4	Engine configuration	13		
	4.5	Tankplan	14		
	4.6	Subdivision	15		
5	Нус	drodynamics	17		
	5.1	Speed power performance	17		
	5.2	Manoeuvrability	17		
6	Inta	act stability	18		
	6.1	Loading conditions	18		
	6.2	GM Limiting curve	19		
7	Res	sults of damage stability calculation	19		
	7.1	Attained index vs R	19		
	7.2	Reg 8 results	20		
8	СО	NCLUSIONS AND RECOMMENDATIONS	21		
	8.1	Conclusions	21		
9	AD	DITIONAL INFORMATION	21		

List of symbols and abbreviations

- DoA Description of Action
- EC European Commission
- PMT Project Management Team
- SG Steering Group
- QA Quality Assurance
- GT Gross Tonnage
- NAPA Naval Architectural Package
- MVZ Main Vertical Zone
- FEM Finte Element Method
- POB Persons On Board

List of figures

Figure	1 General Arrangement upper decks	11
Figure	2 General Arrangement lower decks	12
Figure	3 Bodyplan	13
Figure	4 Tankplan	14
Figure	5 Subdivision used for calculations	16
Figure	6 Speed power performance	17
Figure	7 GM Limiting curve	19

List of tables

Table 1 Main Dimensions	9
Table 2 Tank capacities	14
Table 3: Loading condition details	18
Table 4: Attained index for each initial condition	20
Table 5: Index according to number of zones	20
Table 6: GM limits for s>0.9 acc. Reg 8.3	20

1 EXECUTIVE SUMMARY

This report describes sample ship no 6, a small size day ferry.

1.1 Problem definition

- To ensure realistic research for the response to flooding events it is necessary to have sample ships available, which may be used in other work packages of this project as well as made public available.
- The basic requirements for the sample ship are to reflect large passenger ships design according to the latest SOLAS amendments (SOLAS2020)

1.2 Technical approach and work plan

- A design has been chosen which has been used in a similar way in the previous research projects GOALDS [1] and EMSA3 [2]
- The original design has been upgraded by modification of main dimensions to reach the SOLAS2020 standard.

1.3 Results

- The selected design has been created to reach suitable degree of detail to provide reasonable continuation of the work.
- In particular the ship may form a valid basis for the cost benefit assessment of risk control options in WP7.
- This design is at a pre-contractual stage but ready to start detailed engineering and construction. The layout and information allows all kind of investigations for damage stability, however detailed information about internal systems, like piping, ducting and cabling cannot be provided.

1.4 Conclusions and recommendation

• The information provided may form on part of the basic data so that the work can be continued in this project in other work packages.

2 INTRODUCTION

2.1 Task/Sub-task text

A number of sample ships of large cruise vessels and RoPax ferries, will be provided by the FLARE participants to reflect typical designs of the current fleet. As the focus is laid on large ships, the following limits will be applied:

Gross tonnage > 10,000 GT Length > 120m No of MVZ >2

It is anticipated that all ships comply with the future SOLAS requirements (SOLAS2020). In this respect, RoPax ships do not need to comply with Stockholm Agreement.

For this project the anticipated degree of detail in the information is based on realistic conceptual designs, conceptual GAP and NAPA model. No detailed information about the systems and components is needed, like the routing of pipes, ducts and cables. If for some work in the following work packages more detailed information is needed, suitable assumptions are to be made by the designers in the provision of such information.

The data of ships used as sample ships in this project is to be prepared to be published, so if existing ships are used a written confirmation by the owner/operator and designers is needed for such use.

The sample ships will be used in the other work packages and also as the basis for the impact of any risk control options.

For each ship a separate deliverable will be created containing a description of the ship, including a general arrangement drawing and the NAPA database.

3 BUSINESS MODEL

As the basis for the design of this ship a business model has been defined to define the basic parameters which need to be fulfilled. These parameters and the business model will be kept unchanged throughout the design process and also during further design studies during a later stage of this project.

The ship is a day ferry with a roro deck for trucks and trailers and an additional garage deck for cars within the super structure for short international voyage. Stern ramp and bow ramp/door provides access from shore to the main roro deck. Access from shore to garage deck to be arranged by a bow door and a land based ramp at the forward end of the garage deck. For loading and unloading of the garage deck there to be located a fixed ramp between garage and main roro deck.

The ship is designed as a day ferry with suitable public rooms, like restaurants, shopping areas and lounges.

Following main parameters are to be kept to maintain the business model of this vessel:

- 1. Approx 1900 passenger
- 2. Approx 140 crew berths in mix of 90 single and two person cabins
- 3. Cargo capacity
 - a. abt 800 m trailer lanes, width of lane 2900-3250mm, free height of trailer lanes 4,6 m in main roro deck
 - b. abt.1050 car lanes, width of lane 2300mm, free height 2,1m in garage deck
- 4. Public rooms on lower decks
 - a. Buffet restaurant
 - b. Cafeteria
 - c. Main lounge
 - d. Secondary lounge
 - e. Casino
 - f. Kids room
 - g. Tax free shop
 - h. Fashion Shop
 - i. Logo shop
 - j. Sun deck
 - k. Reception
- 5. Crew mess and recreation areas
- 6. Provision rooms, storage rooms and workshops according to ship size
- 7. Restrictions of main dimensions
 - a. Maximum draught < 6,50m
- 8. Tank capacities
 - a. LNG 250 m3
 - b. Marine gas Oil 400m3
 - c. Potable Water 700m3

9. Deadweight total 3800 t

- a. 1600 t Trailer
- b. 400 t cars
- c. 400 t potable water
- d. 100 t LNG
- e. 200 t fuel oil
- f. 60 t lub oil
- g. 300 t heeling waterh. 80 t waste water
- i. 50 t special tanks
- j. 240 t stores and provision
- k. 190 t crew and passengers
- I. 180 t misc
- 10. Service speed 17 knots
- 11. Operational profile: as an average 360 days per year in service, whereof
 - a. 56% in port
 - b. 8% low speed (8,5 knots)
 - c. 36% medium speed (16,5knots)

4 General Description of the Ship

The ship is a small day ferry with a roro deck for trucks and trailers and a garage deck for cars. The cargo handling for trucks and trailers is based on a drive-through concept with large stern ramps and a bow door and ramp on the bulkhead deck. The access to the garage deck is provided via fixed ramp between garage and main roro deck and via bow door in garage deck.

The ship is designed as a day ferry with suitable public rooms, like restaurants, shopping areas, lounges.

The ship has a diesel-electric power plant, with 2 shaft lines, bulbous bow and a transom stern. Ship's power plant supply power for propulsion and ship's network. The power plant consists of four generating sets; medium speed dual fuel (diesel / LNG) engines coupled to alternators. Propulsion is provided by two shaft lines; propellers driven by two electric propulsion motors. The anticipated service speed is with 17.0 kn, however the actual service speed may vary with the specific service.

Length over all	ABT. 162 m
Length between perpendiculars	146.72 m
Breadth	28.0 m
Subdivision draught	6.30 m
Height of bulkhead deck	9.20 m
Number of passengers	1900
Number of crew	100
Gross tonnage	28500
Deadweight	3800 t
No of cabins (crew)	91
Lane meter for trailers	ABT. 800
Lane maters for cars	ABT. 1060

Table 1 Main Dimensions

4.1 Regulations

The design complies with all relevant IMO rules and regulations applicable for ships with contract after 1 January 2020, which includes following codes.

- 1. SOLAS1974 as amended, including probabilistic damage stability and "Safe Return to Port" (SOLAS2020), Short international voyage
- 2. Intact Stability Code (IS Code 2008)
- 3. Load line Convention
- 4. MARPOL, including fuel oil tank protection
- 5. Marine Labour Convention 2006

4.2 General Arrangement

The following figures show the General Arrangement plan

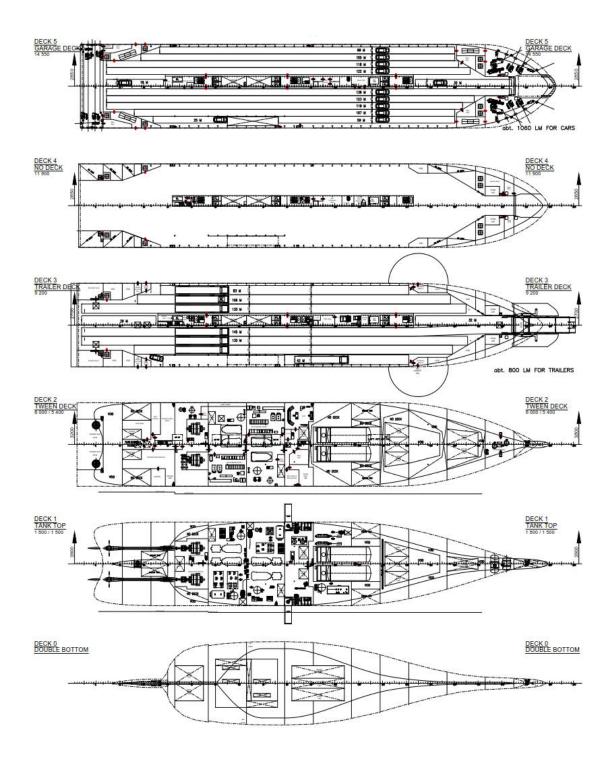
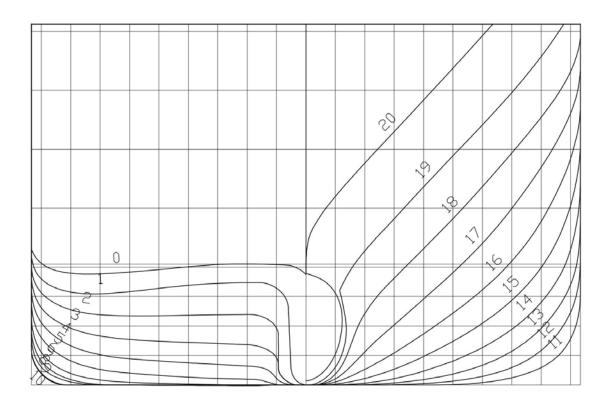
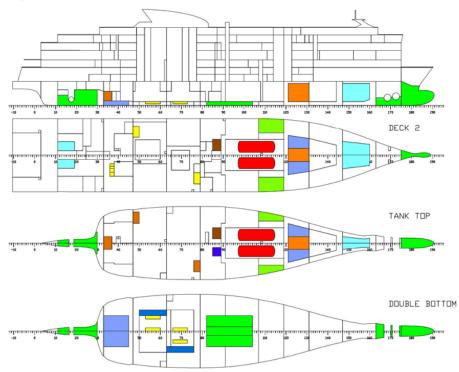



Figure 2 General Arrangement lower decks

4.3 Hullform

The ship has a conventional modern hull form of a twin screw vessel with bulbous bow and slender skeg and transom stern and a tunnel shaped aft body.

Figure 3 Bodyplan


4.4 Engine configuration

The engine configuration is based on a diesel-electric power plant with 4 medium sized dual fuel main engines, four generator sets. The propellers are driven by two electric propulsion motors.

4.5 Tankplan

Figure 4 Tankplan

The following capacities are achieved for the various purposes:

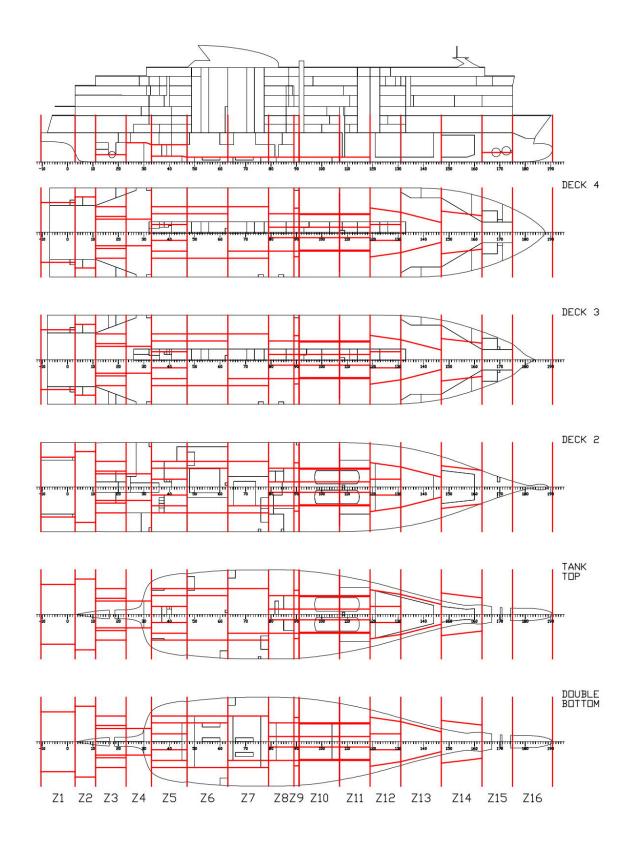
	VNET	WEIGHT	LCG	VCG	MOM
NAME					
POTABLE WATER	704.6 m3	704.6 t	106.32 m	5.83 m	246mt
HEELING WATER	714.7 m3	714.7 t	90.31 m	5.68 m	254 mt
BALLAST WATER	976.1 m3	1000.5 t	75.20 m	2.58 m	501 mt
TECHNICAL WATER	65.1 m3	65.1 t	50.68 m	0.77 m	18 mt
LNG	534.2 m3	251.1 t	84.73 m	4.45 m	132 mt
GAS OIL	437.7 m3	376.4 t	82.40 m	4.78 m	125 mt
LUBRICATING OIL	107.3 m3	96.5 t	46.07 m	5.54 m	32 mt
GREY WATER	658.7 m3	658.7 t	86.71 m	4.51 m	422 mt

Table 2 Tank capacities

4.6 Subdivision

The watertight subdivision follows the needs from the functionality of the spaces, e.g. the size of the compartment for LNG tanks as well as the size of the main engine rooms.

Due to redundancy requirements as defined in SOLAS II/2 there are two independent engine rooms with generators and two own water tight rooms for the electric propulsion motors. These boundaries cause special attention for the damage stability. The LNG tanks are located in own watertight compartment like lower hold. The voids spaces around the tank areas and in the double bottom in such a way to allow instantaneous symmetrical flooding. The heeling water tanks are located on longitudinal location to minimize need of ballast for trimming the ship to even keel situation on departure conditions.


Deck 3 is the main cargo and bulkhead deck. Between deck 3 and 5 there are smaller buoyant spaces at the very end of cargo space to provide additional buoyancy. The access to these spaces is usually not needed during normal voyages but only during loading and unloading. Therefore these spaces can be closed watertight, without applying escape routes.

As required by SOLAS there is no access from the roro deck downwards, the minimum height of any opening is 2.5m above the deck.

The ship is provided with a continuous double bottom with a height of more than B/20 where is required and in way of tank area in forward part of the ship there are U-shaped dry tanks up to bulkhead deck 3.

The figure below shows the watertight subdivision and the damage zones used in the SOLAS2020 calculation of the attained index.

Figure 5 Subdivision used for calculations

5 Hydrodynamics

5.1 Speed power performance

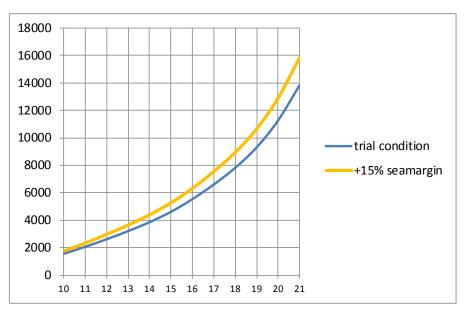


Figure 6 Speed power performance

5.2 Manoeuvrability

The ship is equipped with 2 bow thrusters of 1800 kW each, one stern thrusters of 900 kW to maintain the required wind speed in the worst direction.

6 Intact stability

6.1 Loading conditions

The table below shows the loading conditions designed for further examination of the sample ship:

NAME	TEXT	DW	CA	BW	GW	LNG	GO	PW
L2	Design draught, departure	3800 t	2000 t	0 t	40 t	100 t	200 t	400 t
L3	Spec case arrival 10% bunkers and stores	3239 t	2000 t	312 t	40 t	10 t	20 t	40 t
L4	Ballast draught, departure	2005 t	0 t	0 t	40 t	200 t	215 t	490 t
L5	Ballast draught, arrival	1318 t	0 t	370 t	40 t	200 t	22 t	49 t
L6	Max trailers and cars, 100 % Bunkers and stores	4525 t	2520 t	0 t	40 t	200 t	215 t	490 t
L7	Only cars, departure	2500 t	700 t	0 t	40 t	100 t	200 t	400 t
L8	Only cars, arrival	1939 t	700 t	312 t	40 t	10 t	22 t	40 t

NAME	TEXT	Draught	trim	GM
L2	Design draught, departure	6.10 m	0.02 m	4.75 m
L3	Spec case arrival 10% bunkers and stores	5.94 m	-0.02 m	4.83 m
L4	Ballast draught, departure	5.60 m	-0.01 m	5.33 m
L5	Ballast draught, arrival	5.40 m	-0.01 m	5.46 m
L6	Max trailers and cars, 100 % Bunkers and stores	6.30 m	0.06 m	4.84 m
L7	Only cars, departure	5.74 m	0.01 m	4.99 m
L8	Only cars, arrival	5.58 m	0.01 m	5.15 m

Table 3: Loading condition details

6.2 GM Limiting curve

The following diagram shows the summary of the GM requirements together with the actual loading conditions.

There are various limits shown which all need to be complied with, in particular there is the limit of the intact stability criteria as defined by the IS code 2008, and limits for compliance with the damage stability requirements.

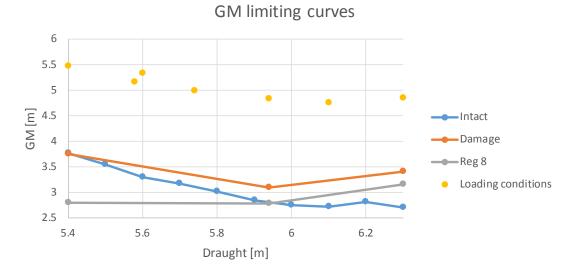


Figure 7 GM Limiting curve

7 Results of damage stability calculation

7.1 Attained index vs R

The following tables show the result of the damage stability calculations according SOLAS II-1.

ATTAINED AND REQUIRED SUBDIVISION INDEX

Subdivision length	160.958 m
Breadth at the load line	28.000 m
Breadth at the bulkhead deck	28.000 m
Total number of persons on board	2000
Required subdivision index SOLAS2020	R = 0.8611
Required subdivision index SOLAS2009	R = 0.7907
Attained subdivision index	A = 0.8892

Init	Damtab	Т	А	A/R	A*WCOEF	WCOEF
DL	DAMP	5.4	0.95958	1.11	0.095958	0.1
DL	DAMS	5.4	0.95755	1.11	0.095755	0.1
DP	DAMP	5.94	0.8946	1.04	0.17892	0.2
DP	DAMS	5.94	0.88401	1.03	0.176802	0.2
DS	DAMP	6.3	0.86068	1.00	0.172136	0.2
DS	DAMS	6.3	0.84827	0.99	0.169654	0.2
Total					0.889225	

Table 4: Attained index for each initial condition

	S-side	P-side	Average P+S
Damages	P*V*S*W	P*V*S*W	P*V*S*W
1 -zone	0.369	0.369	0.369
2 -zone	0.38275	0.38439	0.38357
3 -zone	0.1115	0.1176	0.11455
4 -zone	0.02042	0.02189	0.021155
5 -zone	0.00076	0.00114	0.00095
A-index total	0.88443	0.89402	0.889225

Table 5: Index according to number of zones.

7.2 Reg 8 results

Т	MINGM	DCRI	DAM
5.4	2.80	S-REG8	MS8-9.1.0-1
5.94	2.78	S-REG8	MS8-9.1.0-1
6.3	3.15	S-REG8	MS8-9.1.0-1

Table 6: GM limits for s>0.9 acc. Reg 8.3

The corresponding GM limiting curves are shown in figure 7.

8 CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

The information shown in this document and the associated files defines a state-of-the-art medium size day ferry.

9 ADDITIONAL INFORMATION

Following information is available as separated files:

- General Arrangement Drawing (pdf format)
- Napa data base, including hull form and internal geometry, loading conditions and damage stability data (NAPA db)

Acronym: Project full title: Grant agreement No. Coordinator: FLARE Flooding Accident REsponse 814753 BALance Technology Consulting GmbH

Deliverable 2.1.7

The project has received funding from the European's Horizon 2020 research and innovation programme (Contract No.: 814753)

Deliverable data

Deliverable No	2.1.7
Deliverable Title	Sample Ship o 7
Work Package no: title	WP2.1 Sample Ships

Dissemination level	Public	Deliverable type	Doport
Disseriiliation level	FUDIIC	Deliverable type	Report
Lead beneficiary	MW		
Responsible author	Henning Luhmann		
Co-authors			
Date of delivery	[dd-mm-yyyy]		
Approved	Name (partner)		Date [DD-MM-YYYY]
Peer reviewer 1	Anna-Lea routi (MT)		
Peer reviewer 2			

Document history

Version	Date	Description
V02	29.6.2019	Initial version
V03	22.8.2019	Version after review
V03	15.02.2021	GAP replaced in figure 3

The research leading to these results has received funding from the European Union Horizon 2020 Program under grant agreement n° 814753.

This report reflects only the author's view. INEA is not responsible for any use that may be made of the information it contains.

The information contained in this report is subject to change without notice and should not be construed as a commitment by any members of the FLARE Consortium. In the event of any software or algorithms being described in this report, the FLARE Consortium assumes no responsibility for the use or inability to use any of its software or algorithms. The information is provided without any warranty of any kind and the FLARE Consortium expressly disclaims all implied warranties, including but not limited to the implied warranties of merchantability and fitness for a particular use.

© COPYRIGHT 2019 The FLARE consortium

This document may not be copied, reproduced, or modified in whole or in part for any purpose without written permission from the FLARE Consortium. In addition, to such written permission to copy, acknowledgement of the authors of the document and all applicable portions of the copyright notice must be clearly referenced. All rights reserved.

CONTENTS

List of	f symbols and abbreviations	4
1 E	EXECUTIVE SUMMARY	6
1.1	Problem definition	6
1.2	Technical approach and work plan	6
1.3	Results	6
1.4	Conclusions and recommendation	6
2 I	INTRODUCTION	7
2.1	Task/Sub-task text	7
3 E	BUSINESS MODEL	8
4 (GENERAL DESCRIPTION OF THE SHIP	10
4.1	Regulations	11
4.2	General Arrangement	11
4.3	Hullform	14
4.4	Engine configuration	14
4.5	Tankplan	15
4.6	Subdivision	16
5 H	HYDRODYNAMICS	18
5.1	Speed power performance	18
5.2	Manoeuvrability	18
6 I	NTACT STABILITY	19
6.1	Loading conditions	19
6.2	GM Limiting curve	20
7 F	RESULT OF DAMAGE STABILITY CALCULATIONS	21
7.1	Attained index vs R	21
7.2	Reg 8 results	22
7.3	Results non-zonal approach	22
8 (23
8.1	Conclusions	23
9 F	REFERENCES	23
10	ADDITIONAL INFORMATION	23

List of symbols and abbreviations

- **DoA** Description of Action
- EC European Commission
- PMT Project Management Team
- SG Steering Group
- QA Quality Assurance
- GT Gross Tonnage
- NAPA Naval Architectural Package
- MVZ Main Vertical Zone
- FEM Finite Element Method
- POB Persons On Board
- GAP General Arrangement Plan
- GM Metacentric height
- KG vertical centre of gravity
- VCG vertical centre of gravity
- LCG longitudinal centre of gravity
- FSM free surface moment
- DL lightest service draught
- DP partial draught
- DS deepest subdivision draught

List of figures

Figure	1 Profile view	11
Figure	2 GAP Deck 7 – 13	12
Figure	3 GAP Decks 01 – 06	13
Figure	4 Bodyplan	14
Figure	5 Tankplan	15
Figure	6 Subdivision used for calculations	17
Figure	7 Speed power performance	18
Figure	8 GM Limiting curve	20

List of tables

Table 1 Main dimensions	.10
Table 2 Tank capacities	.16
Table 3: Loading condition details	.19
Table 4: Attained index for each initial condition	.21
Table 5: Index according to number of zones	.21
Table 6: GM limits for s>0.9 acc. Reg 8.3	.22
Table 7 Attained index acc. non-zonal approach	.22

1 EXECUTIVE SUMMARY

This report describes sample ship no 7, a large RoPax ferry.

1.1 Problem definition

- To ensure realistic research for the response to flooding events it is necessary to have sample ships available, which may be used in other work packages of this project as well as made public available.
- The basic requirements for the sample ship are to reflect large passenger ships design according to the latest SOLAS amendments (SOLAS2020)

1.2 Technical approach and work plan

- A design has been chosen which has been used in a similar way in the previous research projects GOALDS [1] and EMSA3 [2]
- The original design has been upgraded by modification of main dimensions to reach the SOLAS2020 standard.

1.3 Results

- The selected design has been created to reach suitable degree of detail to provide reasonable continuation of the work.
- In particular the ship may form a valid basis for the cost benefit assessment of risk control options in WP7.
- This design is at a pre-contractual stage but ready to start detailed engineering and construction. The layout and information allows all kind of investigations for damage stability, however detailed information about internal systems, like piping, ducting and cabling cannot be provided.

1.4 Conclusions and recommendation

• The information provided may form on part of the basic data so that the work can be continued in this project in other work packages.

2 INTRODUCTION

2.1 Task/Sub-task text

A number of sample ships of large cruise vessels and RoPax ferries, will be provided by the FLARE participants to reflect typical designs of the current fleet. As the focus is laid on large ships, the following limits will be applied:

Gross tonnage > 10,000 GT Length > 120m No of MVZ >2

It is anticipated that all ships comply with the future SOLAS requirements (SOLAS2020). In this respect, RoPax ships do not need to comply with Stockholm Agreement.

For this project the anticipated degree of detail in the information is based on realistic conceptual designs, conceptual GAP and NAPA model. No detailed information about the systems and components is needed, like the routing of pipes, ducts and cables. If for some work in the following work packages more detailed information is needed, suitable assumptions are to be made by the designers in the provision of such information.

The data of ships used as sample ships in this project is to be prepared to be published, so if existing ships are used a written confirmation by the owner/operator and designers is needed for such use.

The sample ships will be used in the other work packages and also as the basis for the impact of any risk control options.

For each ship a separate deliverable will be created containing a description of the ship, including a general arrangement drawing and the NAPA database.

3 BUSINESS MODEL

As the basis for the design of this ship a business model has been defined to define the basic parameters which need to be fulfilled. These parameters and the business model will be kept unchanged throughout the design process and also during further design studies during a later stage of this project.

The ship is a large modern cruise ferry with a roro deck for trucks and trailers, a large lower hold for cars and an additional car deck within the super structure for short international voyage.

The ship is designed as an overnight ferry with a large number of cabins and suitable public rooms, like restaurants, shopping areas, conference centre, lounges and a spa area.

Following main parameters are to be kept to maintain the business model of this vessel:

- 1. Approx 1000 passenger cabins
- 2. Approx 200 crew berths in single cabins
- 3. Cargo capacity
 - a. 1500 m trailer lanes, width of lane 3000mm, free height of trailer lanes 4.6 m
 - b. 1000 cars, with no trucks. Cars may be stowed in lower hold and hoistable car deck
- 4. Public rooms on lower decks
 - a. Night club / lounge 2 decks 1600 m2
 - b. Buffet restaurant 1000 m2
 - c. 2 special restaurants
 - d. Tax Free shop 1000m2
 - e. Spa area 350 m2
 - f. Sea view Lounge 500 m2
 - g. conference area 800 m2
 - h. sun deck
 - i. Cafés and snack bars
 - j. Shopping mall
 - k. Reception
 - I. Driver restaurant
- 5. Crew mess and recreation areas
- 6. Provision rooms, storage rooms and workshops according to ship size
- 7. Restrictions of main dimensions
 - a. Length over all < 230m
 - b. Maximum draught < 6.80m
- 8. Tank capacities
 - a. Heavy Fuel Oil 1000 m3
 - b. Marine gas Oil 700m3
 - c. Potable Water 1200m3
- 9. Deadweight total 6750 t
 - a. 2800 t Trailer

- b. 600 t cars
- c. 800 t potable water
- d. 800 t fuel oil
- e. 100 t lub oil
- f. 450 t heeling water
- g. 400t waste water
- h. 200t special tanks
- i. 400 t stores and provision
- j. 200 t crew and passengers
- 10. Service speed 21.5 knots at 85% MCR
- 11. Operational profile: as an average 360 days per year in service, whereof
 - a. 17% in port
 - b. 13% low speed (12 knots)
 - c. 17% medium speed (15 knots)
 - d. 54% high speed (20 knots)

4 GENERAL DESCRIPTION OF THE SHIP

The ship is a large modern cruise ferry with a roro deck for trucks and trailers, a large lower hold for cars and an additional car deck within the super structure. The cargo handling is based on a drive-through concept with large stern ramps and a bow door and ramp on the bulkhead deck. The access to the other cargo areas is provided via internal ramps.

In addition a hoistable car deck is provided to allow for sufficient car capacity.

The ship is designed as an overnight ferry with a large number of cabins and suitable public rooms, like restaurants, shopping areas, conference centre, lounges and a spa area.

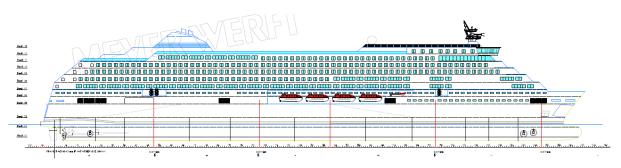
The propulsion concept is based on a twin screw plant with CPP and 4 geared main engines. 4 auxiliary diesel generators are provided to supply the energy for the hotel services. The anticipated service speed is with 21.5kn in the medium range of similar vessels, however the actual service speed may vary with the specific service.

Length over all	Apprx 229m
Length between perpendiculars	214.32 m
Subdivision length	227.97 m
Breadth	33.2 m
Subdivision draught	6.70 m
Height of bulkhead deck	9.70 m
Number of passengers	3300
Number of crew	200
Gross tonnage	70000
Deadweight	6900 t
No of cabins	1000
Lanemeter	1500
No of cars	1000

Main dimensions

Table 1 Main dimensions

ARE


4.1 Regulations

The design complies with all relevant IMO rules and regulations applicable for ships with contract after 1 January 2020, which includes following codes.

- 1. SOLAS1974 as amended, including probabilistic damage stability and "Safe Return to Port" (SOLAS2020), Short international voyage
- 2. Intact Stability Code (IS Code 2008)
- 3. Load line Convention
- 4. MARPOL, including fuel oil tank protection
- 5. Marine Labour Convention 2006

4.2 General Arrangement

The following figures show the General Arrangement plan

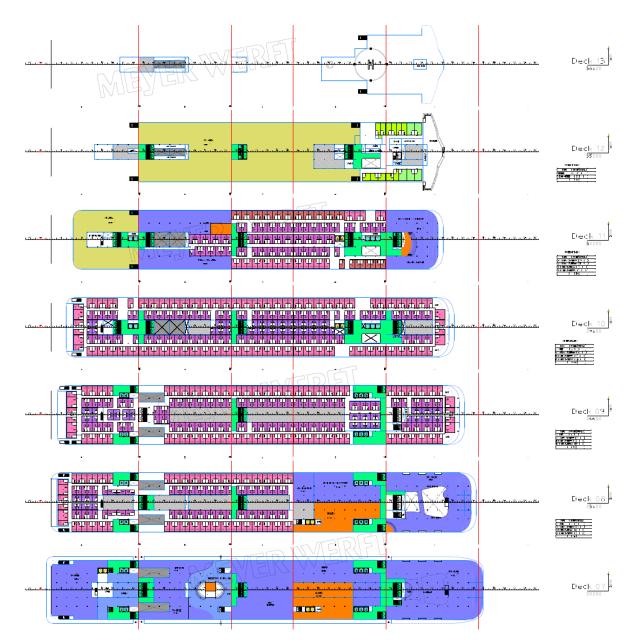


Figure 2 GAP Deck 7 – 13

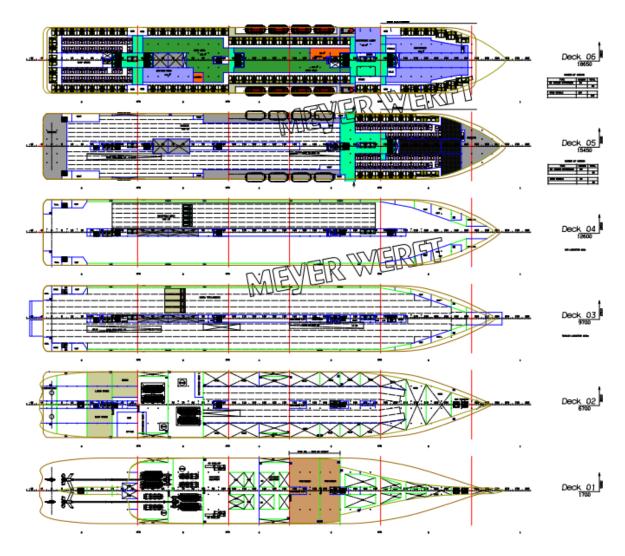
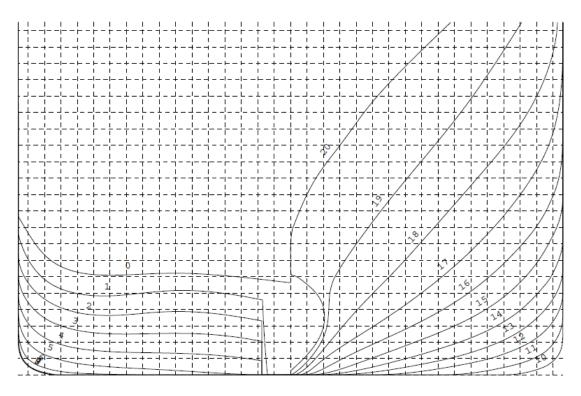



Figure 3 GAP Decks 01 – 06

4.3 Hullform

The ship has a conventional modern hull form of a twin screw vessel with bulbous bow and slender skeg and transom stern and a tunnel shaped aft body.

Figure 4 Bodyplan

4.4 Engine configuration

The engine configuration is based on a shaft driven diesel plant with 4 medium sized main engines, four generator sets. Exhaust gas cleaning is provided with closed loop scrubbers and SCR catalysators.

4.5 Tankplan

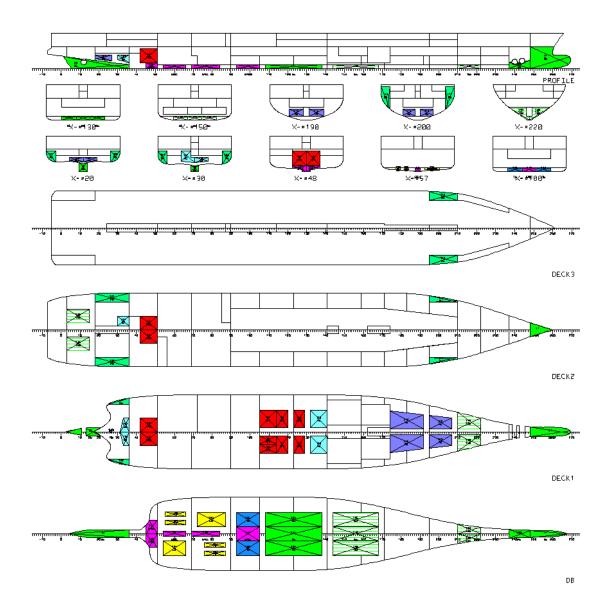


Figure 5 Tankplan

	Volume	WEIGHT	LCG	VCG	FSM
NAME					
POTABLE WATER	1135,7 m3	1135,7 t	136,52 m	3,56 m	1409 mt
HEELING WATER	1379,9 m3	1379,9 t	104,61 m	8,98 m	439 mt
BALLAST WATER	1517,5 m3	1555,4 t	121,13 m	2,20 m	1923 mt
TECHNICAL WATER	212,0 m3	212,0 t	81,43 m	0,85 m	434 mt
HEAVY FUEL OIL	1388,6 m3	1333,0 t	72,41 m	4,27 m	1279 mt
GAS OIL	558,9 m3	480,7 t	80,79 m	4,12 m	617 mt
LUBRICATING OIL	181,5 m3	163,4 t	58,33 m	1,27 m	457 mt
SPECIAL TANKS	271,9 m3	271,9 t	60,50 m	1,08 m	385 mt
GREY WATER	590,5 m3	590,5 t	128,16 m	0,89 m	1226 mt
TREATED GREY WATER	942,9 m3	942,9 t	104,73 m	5,14 m	1588 mt

The following capacities are achieved for the various purposes:

Table 2 Tank capacities

4.6 Subdivision

The watertight subdivision follows the needs from the functionality of the spaces, e.g. the size of the lower hold as well as the size of the main engine rooms.

Due to redundancy requirements as defined in SOLAS II/2 the engine rooms are quite large and cause special attention for the damage stability. The voids spaces around the large lower hold are designs in such a way to allow instantaneous symmetrical flooding.

Deck 3 is the main cargo and bulkhead deck. Between deck 3 and 5 there are smaller buoyant spaces at the very end of cargo space to provide additional buoyancy. The access to these spaces is usually not needed during normal voyages but only during loading and unloading. Therefore these spaces can be closed watertight, without applying escape routes.

As required by SOLAS there is no access from the roro deck downwards, the minimum height of any opening is 2.5m above the deck. The hatches to the ramps leading to the large lower hold as well as to the provision area are assumed to be watertight.

The ship is provided with a continuous double bottom with a height of more than B/20.

The figure below shows the watertight subdivision and the damage zones used in the SOLAS2020 calculation of the attained index.

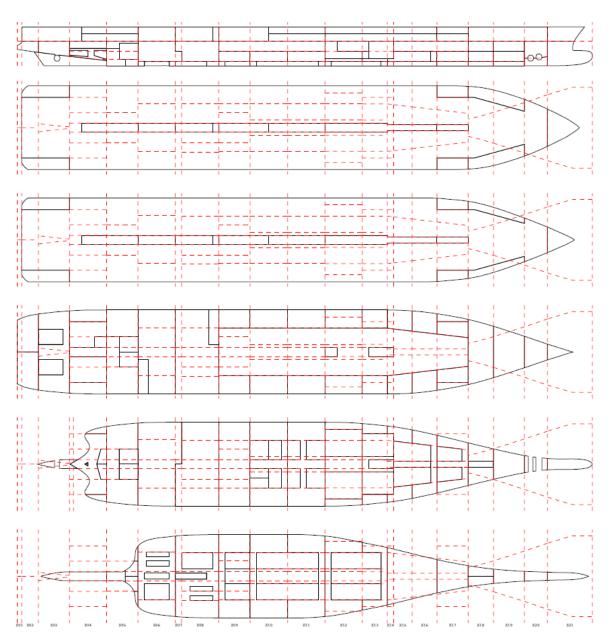


Figure 6 Subdivision used for calculations

5 HYDRODYNAMICS

5.1 Speed power performance

Figure 7 Speed power performance

5.2 Manoeuvrability

The ship is equipped with 2 bow thrusters of 2500 kW each, one stern thrusters and high lift rudders to maintain the required wind speed in the worst direction.

Under the given wind speed the ship will be able to keep its position without the help of tugs.

6 INTACT STABILITY

6.1 Loading conditions

The table below shows the loading conditions designed for further examination of the sample ship:

NAME	TEXT	Deadweight	Cargo	Ballast	Grey	Treated	Heavy	Potable
				Water	Water	Grey	Fuel	Water
						Water	Oil	
LD21	Trailer and cars	6900 t	3400	0 t	200 t	200 t	600 t	800 t
	100% consumables		t					
LD25	Trailer and cars	5992 t	3400	328 t	200 t	200 t	222 t	196 t
	10% consumables		t					
LD31	Only cars,	4981 t	1481	0 t	200 t	200 t	600 t	800 t
	100% consumables		t					
LD35	Only cars,	4213 t	1481	319 t	200 t	200 t	222 t	196 t
	10% consumables		t					
LD41	Only Pass,	3500 t	0 t	0 t	200 t	200 t	600 t	800 t
	100% consumables							
LD45	Only pass,	3163 t	0 t	749 t	200 t	200 t	222 t	196 t
	10% consumables							

NAME	ТЕХТ	Draught	trim	GM
LD21	Trailer and cars 100% consumables	6,69 m	0,05 m	5,34 m
LD25	Trailer and cars 10% consumables	6,55 m	0,00 m	5,24 m
LD31	Only cars, 100% consumables	6,38 m	0,15 m	5,57 m
LD35	Only cars, 10% consumables	6,27 m	0,08 m	5,46 m
LD41	Only Pass, 100% consumables	6,16 m	0,05 m	5,82 m
LD45	Only pass, 10% consumables	6,10 m	0,07 m	5,85 m

Table 3: Loading condition details

6.2 GM Limiting curve

The following diagram shows the summary of the GM requirements together with the actual loading conditions.

There are various limits shown which all need to be complied with, in particular there is the limit of the intact stability criteria as defined by the IS code 2008, and limits for compliance with the damage stability requirements.

Figure 8 GM Limiting curve

7 RESULT OF DAMAGE STABILITY CALCULATIONS

7.1 Attained index vs R

The following tables show the result of the damage stability calculations according SOLAS II-1.

ATTAINED AND REQUIRED SUBDIVISION INDEX

Subdivision leng Breadth at the l Breadth at the b Number of person Number of person	oad line ulkhead o s Nl	leck 3		m		
Required subdivi	sion inde	ex R (SC	DLAS200	9) = 0.83	30	
Required subdivi	sion inde	ex R (SC	DLAS202	20) = 0.88	10	
Attained subdivi	sion inde	ex A = 0	0.89475	5		
INITDAMTAB	Т	GM	A/R	A	A*WCOEF	WCOEF
	m	m				
DL DAMP	6.090	5.550	1.11	0.92547	0.09255	0.100
DL DAMS	6.090	5.550	1.11	0.92598	0.09260	0.100
DP DAMP	6.456	5.061	1.07	0.89426	0.17885	0.200
DP DAMS	6.456	5.061		0.89349		
DS DAMP	6.700			0.87899		
DS DAMS	6.700	5.111	1.06	0.88129	0.17626	0.200

Table 4: Attained index for each initial condition

DAMAGES	W*P*V*S	W*P*V
1-ZONE DAMAGES	0.29544	0.29547
2-ZONE DAMAGES	0.34291	0.34680
3-ZONE DAMAGES	0.17163	0.19089
4-ZONE DAMAGES	0.06079	0.07872
5-ZONE DAMAGES	0.01813	0.03387
6-ZONE DAMAGES	0.00585	0.01138
A-INDEX TOTAL	0.89475	0.95713

Table 5: Index according to number of zones.

7.2 Reg 8 results

Draught	Minimum	Maximum	Criterion	Damage case
	GM	KG		
6,09	2,74112	18,3674	S-REG8	R8P5-6.1.0-1
6,456	2,88866	17,5902	S-REG8	R8P5-6.1.0-1
6,52482	2,94914	17,4245		
6,7	3,21246	16,8935	S-REG8	R8S5-6.1.0

Table 6: GM limits for s>0.9 acc. Reg 8.3

The corresponding GM limiting curves are shown in figure 7.

7.3 Results non-zonal approach

In addition to the standard damage stability results the attained index following the non-zonal approach [3] has been calculated for collision, bottom grounding and side grounding/contact.

As the basis the SOLAS parameters for draughts, permeability and s-factor have been used. For each of the three categories of flooding events 50,000 breaches have been created.

Initial	Draught	Attained Index	Attained Index	Attained Index
condition		Collision	Bottom grounding	Side grounding/contact
DS	6.700	0.93749	0.95631	0.95468
DP	6.456	0.95196	0.95841	0.95686
DL	6.090	0.97296	0.9622	0.96522

Table 7 Attained index acc. non-zonal approach

8 CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

The information shown in this document and the associated files defines a state-of-the-art large RoPax ferry, which are widely used in the Baltic as overnight ferry.

9 **REFERENCES**

- [1] George Zaraphonitis, GOALDS Deliverable 6.4 Evaluation of innovative designs, Athens 2012
- [2] Henning Luhmann, Task 6: Damage Stability Calculations of GOALDS RoPax Designs, EMSA/OP/10/2013, Oslo 2015
- [3] Gabriele Bulian et al, Considering collision, bottom grounding and side grounding/contact in a common non-zonal framework, Proceedings of the 17th International Ship Stability Workshop, Helsinki 2019

10 ADDITIONAL INFORMATION

Following information is available as separated files:

- General Arrangement Drawing
- Napa data base, including hull form and internal geometry, loading conditions and damage stability data [NAPA db)

Acronym: Project full title: Grant agreement No. Coordinator: FLARE Flooding Accident REsponse 814753 BALance Technology Consulting GmbH

Deliverable 2.1.8

The project has received funding from the European's Horizon 2020 research and innovation programme (Contract No.: 814753)

Deliverable data

Deliverable No	2.1.8
Deliverable Title	Sample Ship no 8
Work Package no: title	WP2.1 Sample Ships

Dissemination level	Public	Deliverable type	Report
Lead beneficiary	FC		
Responsible author	Antonio Enrico Todde		
Co-authors			
Date of delivery	[dd-mm-yyyy]		
Approved			Date [DD-MM-YYYY]
Peer reviewer 1	Rodolphe Bertin		
Peer reviewer 2			

Document history

Version	Date	Description
V00	17.09.2019	Initial version
V01	26.09.2019	Minor editorial changes - Updated version after 1st peer review

The research leading to these results has received funding from the European Union Horizon 2020 Program under grant agreement n° 814753.

This report reflects only the author's view. INEA is not responsible for any use that may be made of the information it contains.

The information contained in this report is subject to change without notice and should not be construed as a commitment by any members of the FLARE Consortium. In the event of any software or algorithms being described in this report, the FLARE Consortium assumes no responsibility for the use or inability to use any of its software or algorithms. The information is provided without any warranty of any kind and the FLARE Consortium expressly disclaims all implied warranties, including but not limited to the implied warranties of merchantability and fitness for a particular use.

© COPYRIGHT 2019 The FLARE consortium

This document may not be copied, reproduced, or modified in whole or in part for any purpose without written permission from the FLARE Consortium. In addition, to such written permission to copy, acknowledgement of the authors of the document and all applicable portions of the copyright notice must be clearly referenced. All rights reserved.

CONTENTS

List of symbols and abbreviations4		
1	E	SECUTIVE SUMMARY
	1.1	Problem definition
	1.2	Technical approach and work plan5
	1.3	Results5
	1.4	Conclusions and recommendation5
2	IN	NTRODUCTION
	2.1	Task/Sub-task text6
3	B	USINESS MODEL
4 General Description of the Ship		eneral Description of the Ship9
	4.1	Regulations9
	4.2	General Arrangement
	4.3	Hullform13
	4.4	Engine configuration13
	4.5	Tankplan
	4.6	Subdivision
5	н	lydrodynamics
	5.1	Speed power performance17
	5.2	Manoeuvrability
6	ntact stability	
	6.1	Loading conditions
	6.2	GM Limiting curve
7	R	esults of damage stability calculation
	7.1	Attained index vs R
	7.2	Reg 8 results21
8	С	CONCLUSIONS AND RECOMMENDATIONS
	8.1	Conclusions
9 REFERENCES		
10	כ	ADDITIONAL INFORMATION

List of symbols and abbreviations

- **DoA** Description of Action
- EC European Commission
- PMT Project Management Team
- SG Steering Group
- QA Quality Assurance
- GT Gross Tonnage
- NAPA Naval Architectural Package
- MVZ Main Vertical Zone
- FEM Finite Element Method
- POB Persons On Board

1 EXECUTIVE SUMMARY

This report describes sample ship no 8, a large RoPax ferry.

1.1 Problem definition

- To ensure realistic research for the response to flooding events it is necessary to have sample ships available, which may be used in other work packages of this project as well as made public available.
- The basic requirements for the sample ship are to reflect large passenger ships design according to the latest SOLAS amendments (SOLAS2020)

1.2 Technical approach and work plan

- A design has been chosen which has not been used before in similar research project and it has not been built. The original design has been upgraded by modification of main dimensions to reach the SOLAS2020 standard.
- The rooms arrangement, the openings and the connections have been updated within Napa software taking into account the achievement of eSAFE project [2] regarding the sequence of flooding in particular for the so called A-class bulkheads.

1.3 Results

- The selected design has been created to reach suitable degree of detail to provide reasonable continuation of the work.
- In particular the ship may form a valid basis for the cost benefit assessment of risk control options in WP7.
- This design is at a pre-contractual stage but ready to start detailed engineering and construction. The layout and information allows all kind of investigations for damage stability, however detailed information about internal systems, like piping, ducting and cabling cannot be provided.

1.4 Conclusions and recommendation

• The information provided is a part of the basic data so that the work can be continued in this project in other work packages.

2 INTRODUCTION

2.1 Task/Sub-task text

A number of sample ships of large cruise vessels and RoPax ferries, will be provided by the FLARE participants to reflect typical designs of the current fleet. As the focus is laid on large ships, the following limits will be applied:

Gross tonnage > 10,000 GT Length > 120m No of MVZ >2

It is anticipated that all ships comply with the future SOLAS requirements (SOLAS2020). In this respect, RoPax ships do not need to comply with Stockholm Agreement.

For this project the anticipated degree of detail in the information is based on realistic conceptual designs, conceptual GAP and NAPA model. No detailed information about the systems and components is needed, like the routing of pipes, ducts and cables. If for some work in the following work packages more detailed information is needed, suitable assumptions are to be made by the designers in the provision of such information.

The data of ships used as sample ships in this project is to be prepared to be published, so if existing ships are used a written confirmation by the owner/operator and designers is needed for such use.

The sample ships will be used in the other work packages and also as the basis for the impact of any risk control options.

For each ship a separate deliverable will be created containing a description of the ship, including a general arrangement drawing and the NAPA database.

3 BUSINESS MODEL

As the basis for the design of this ship a business model has been defined to define the basic parameters which need to be fulfilled. These parameters and the business model will be kept unchanged throughout the design process and also during further design studies during a later stage of this project.

The ship is a modern ferry for short international voyages, fuelled with LNG/MDO and with 2 RoRo deck for trucks and trailers, 1 RoRo car deck and additional partial or hoistable car decks.

The ship is designed as a ferry for the daily routes on the Baltic Sea. For this reason is present on board only a low number of passenger cabins while wide area are dedicated to public spaces. Other than restaurants and lounges, a large part is reserved to shopping. Special attention was paid to guarantee an effective and fast cargo loading and unloading.

Following main parameters are to be kept to maintain the business model of this vessel:

- 1. Number of persons on board: 2800 (2617 passengers and 183 crew)
- 2. Pax accommodation as follow:
 - a. 45 cabins arranged for 4 persons (2 sofa beds + 2 upper bed)
- 3. Crew accommodation as follow:
 - a. 2 Single Master/Chief Engineer cabins
 - b. 1 Single Senior Officer cabin
 - c. 14 Single Officer cabins
 - d. 83 Double Crew cabins
- 4. Cargo capacity and loading
 - a. 2300 m trailer lanes, width of lane 3000mm, free height of trailer btw. 4.4 m and 4.8 m
 - b. 852 cars, with no trucks. Cars may be stowed in hostable car decks
 - c. 2 stern ramps, 2 bow ramp
- 5. Space utilization details for public and service spaces
 - a. Reception, 20 seats
 - b. Shops, abt. 3050 m2
 - c. Teen Lounge, 20 seats
 - d. Meeting room, 18 seats
 - e. Conference room, 38 seats
 - f. Seating Air Lounge, 250 seats
 - g. Drivers Lounge, 80 seats
 - h. Comfort Lounge, 129 seats
 - i. Business Lounge, 134 seasts
 - j. Plaza Bar, 208 seats
 - k. International Cafè, 296 seats
 - I. Fast Food, 340 seats
 - m. Self Service, 358 seats
 - n. Pub and Slot area, 312 seats
 - o. Restaurant "A La Carte", 100 seats
 - p. Officer & Crew Mess, abt. 140 m²
 - q. Officer Day Room, abt. 25 m²
 - r. Crew Day Room, abt. 30 m²
 - s. Smoker's Room, abt. 30 m²
- 6. Provision rooms, storage rooms and workshops according to ship size
- 7. Tank capacities
 - a. LNG (geometric volume) 670 m³
 - b. Marine Diesel Fuel (MDF) 500 m³
 - c. Lubricating Oil (LO) 210 m³
 - d. Grey Water and Black Water 540 m³

e. Fresh Water

580 m³

- 2250 m³
- g. Heeling Water 700 m³ (capacity for compensation of the static heeling angle caused by a list of 2.0 deg at design draught)
- h. Distilled Water

30 m³

- 8. Deadweight 5300 t at design draught
 - a. 3122 † Trailer

f. Ballast water

- b. 672†cars
- c. 190 t passengers and crew
- d. 160 t provision and stores
- e. 320 t trim and heeling water
- f. 262 † LNG
- g. 74†MDF
- h. 70†LO
- i. 320 t Fresh Water
- j. 60 t Black and Grey Water
- k. 40 t Miscellanous and machinary tanks
- I. 10 † Owner Supply
- 9. 2 twisted spade rudders with propeller hub, 2 bow thrusters, 2 aft thrusters and 2 fin stabilizers
- 10. 4 medium speed Dual Fuel engines. Each set of 2 engines shall be coupled to 1 gearbox with clutch couplings, connected to shaft line and CPP
- 11. 3 Duel Fuel generating sets and 2 shaft alternators
- 12. Trial speed of 26.9 knots at contractual draught, calm water, with 4 engines at 90% of MCR, 10% of Sea Margin, with Shaft Generator not engaged

4 General Description of the Ship

The ship is a LNG fuelled ferry. The LNG tanks were arranged in the space traditionally dedicated to lower hold car. Furthermore various stores are arranged under the bulkhead deck.

The RoRo cargo is located above the bulkhead deck (between deck 3 and 7), with deck 3 and 5 capable to host trucks and cars.

The public spaces and passengers cabins mainly occupy deck 8, 9 and 10. Deck 10 includes also crew areas.

Length over all	213 m	
Length between perpendiculars	195.4 m	
Subdivision length	213.0 m	
Breadth	31.5 m	
Subdivision draught	7.1 m	
Height of bulkhead deck	10.3 m	
Number of passengers	2617	
Number of crew	183	
Gross tonnage	abt. 50000 GT	
Deadweight	5300 t	
No of cabins (crew and pax)	145	
Lanemeter	2310	
No of cars	852	

Main dimensions

4.1 Regulations

The design complies with all relevant IMO rules and regulations applicable for ships with contract after 1 January 2020, which includes following codes.

- 1. SOLAS1974 as amended, including probabilistic damage stability and "Safe Return to Port" (SOLAS2020), Short international voyage
- 2. Intact Stability Code (IS Code 2008)
- 3. Load line Convention
- 4. MARPOL, including fuel oil tank protection

4.2 General Arrangement

The following figures show the General Arrangement plan

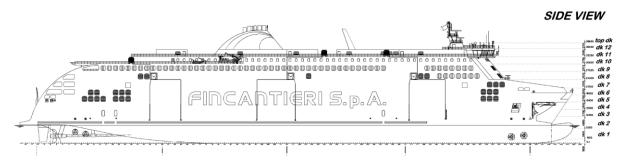


Figure 1 Profile view

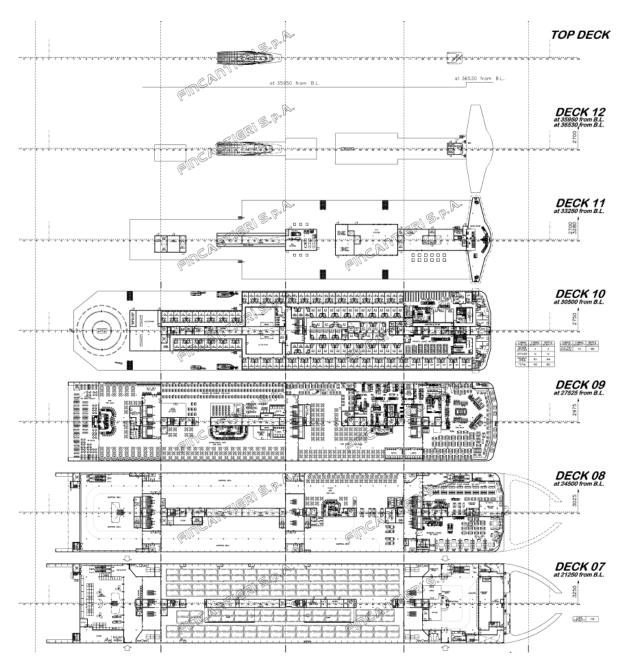


Figure 2 Deck 7 – 12 and Top

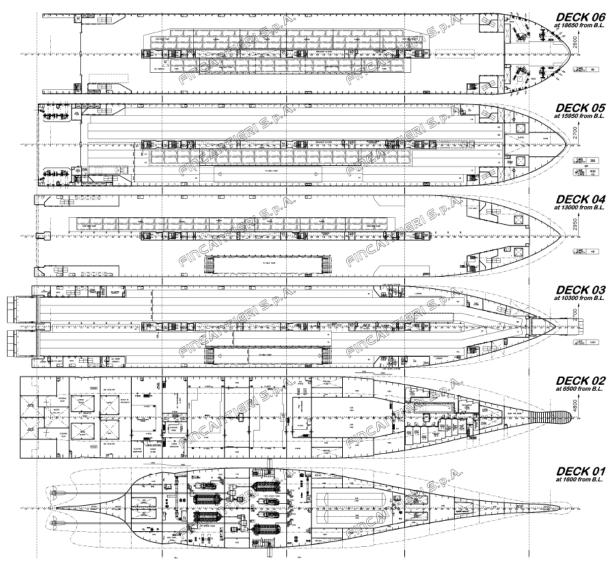
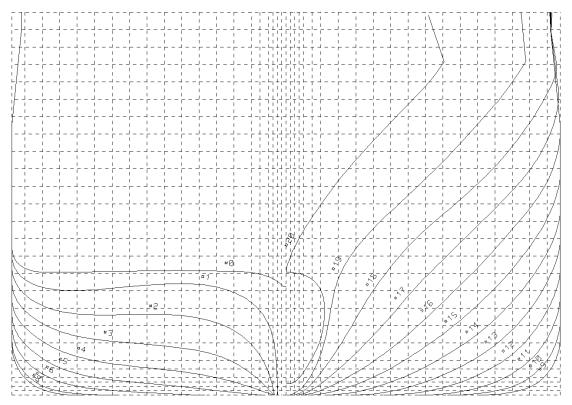



Figure 3 Decks 01 – 06

4.3 Hullform

The ship has a conventional modern hull form of a twin screw vessel with bulbous bow and slender skeg and transom stern.

Figure 4 Bodyplan

4.4 Engine configuration

The engine configuration is based on a shaft driven diesel plant with 4 main engines, 2 shaft generators and 3 generator sets.

Each main engine provides a max. continuous rating of 13740 kW for a total of 56960 kW. Each generator set provides an output of 2600 kW and each shaft generator an output of 3600 kW.

The emission requirements are fulfilled thank to the adoption of LNG.

4.5 Tankplan

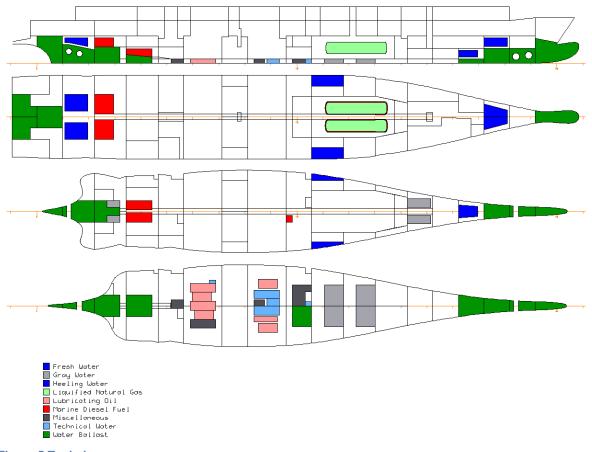


Figure 5 Tankplan

The following capacities are achieved for the various purposes:

Description	RHO	Volume	Requirement	Delta	Weight	
	t/m3	m3	m3	m3	t	
FRESH WATER	1.00	651	580	71	651	
GREY WATER	1.00	546	540	6	546	
HEELING WATER	1.00	781	700	81	781	
LIQUIFIED NATURAL GAS	0.43	678	670	8	292	
LUBRICATING OIL	0.90	217	210	7	195	
MARINE DIESEL FUEL	0.86	551	500	51	474	
TECHNICAL WATER	1.00	131	30	101	131	
BALLAST WATER	1.01	2373	2250	123	2385	

Table 1 Tank capacities

4.6 Subdivision

The watertight subdivision required special effort, considering the large number of passengers and the high power installed in comparison to the main dimensions of the vessel.

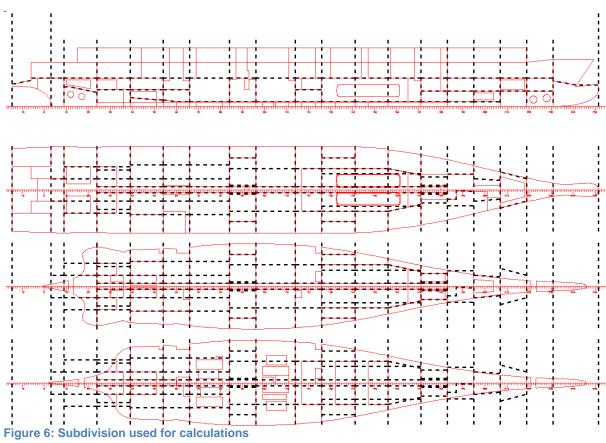
Particular attention was paid to the engine and gear box rooms in order to fulfil both the SRtP and the stability requirements. The main philosophy consisted to arrange machineries in 3 different transversal compartments, as follow:

- 1. Aft compartment: 2 main engines and 1 generator set
- 2. Mid compartment: 2 gear box and 2 shaft generator
- 3. Fore compartment: 2 main engines and 2 generator set

Furthermore in the mid compartment, due to SRtP requirements, each gear box and shaft generator is located in a watertight longitudinal compartment. To avoid excessive list in damage condition the two gear box compartments are protected on sides (below the bulkhead deck) wing void spaces connected through double bottom.

Similarly, 3 void spaces are arranged around the wide compartment containing the two LNG tanks.

Deck 3 is the main cargo and bulkhead deck. In order to increase the stability damaged conditions involving the RoRo cargo area, smaller buoyant spaces are located at sides close both to the stern and to the bow. The access to these spaces is usually not needed during normal voyages but only during loading and unloading. Therefore these spaces can be closed with weatertight doors.


As required by SOLAS there is no access from the RoRo deck downwards, the minimum height of any opening is 2.5m above the deck.

The ship is provided with a continuous double bottom with a height of more than B/20.

In the subdivision table an "UNDAMAGED AREA" has been defined in the central part of the ship. This is used to route pipes generating progressive flooding that may not be controlled by remote control valves.

The figure below shows the watertight subdivision and the damage zones used in the SOLAS2020 calculation of the attained index.

5 Hydrodynamics

5.1 Speed power performance

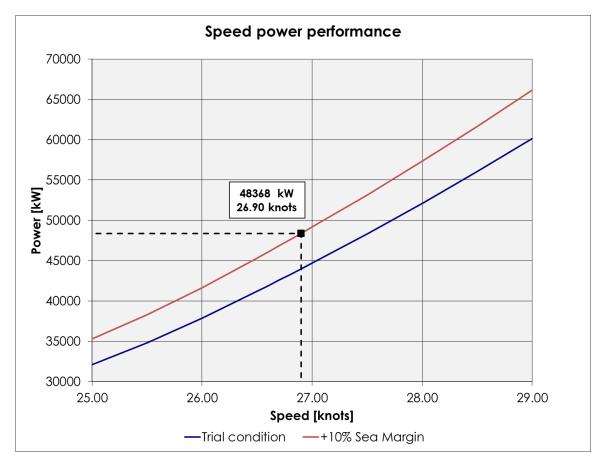


Figure 7: Speed power performance

5.2 Manoeuvrability

The ship is equipped with 2 bow thrusters, 2 stern thrusters and 2 twisted spade rudders with propeller hub.

6 Intact stability

6.1 Loading conditions

The table below shows the loading conditions designed for further examination of the sample ship:

Name		LOA01	LOA02	LOA03	LOA04	LOA05
Description		5300 DWT DEPARTURE T=6.92m	100% consumables with cargo	10% consumables with cargo	100% consumables without cargo	10% consumables without cargo
DWT t		5300	6240	5803	2381	1466
CARS	t	672	324	324	0	0
TRAIL	t	3122	4273	4273	0	0
FW	t	320	457	46	580	58
MDF	t	74	74	7	438	43
LNG	t	262	262	26	262	26
LO	t	70	70	70	70	70
MIS	t	40	40	40	40	40
WB	t	0	0	0	251	193
HEEL	t	320	320	320	320	320
GWT	t	60	60	480	60	500
PROV	t	160	160	16	160	16
POB	t	190	190	190	190	190
OWN	t	10	10	10	10	10

Name	Description	scription T		GM
		m	m	m
LOA01	5300 DWT DEPARTURE T=6.92m	6.92	-0.03	3.51
LOA02	100% consumables with cargo	7.10	0.00	3.56
LOA03	10% consumables with cargo	7.02	0.00	3.53
LOA04	100% consumables without cargo	6.34	0.03	4.38
LOA05	10% consumables without cargo	6.16	0.00	4.39

Table 2: Loading condition details

6.2 GM Limiting curve

The following diagram shows the summary of the GM requirements together with the actual loading conditions.

There are various limits shown which all need to be complied with, in particular there is the limit of the intact stability criteria as defined by the IS code 2008, and limits for compliance with the damage stability requirements.

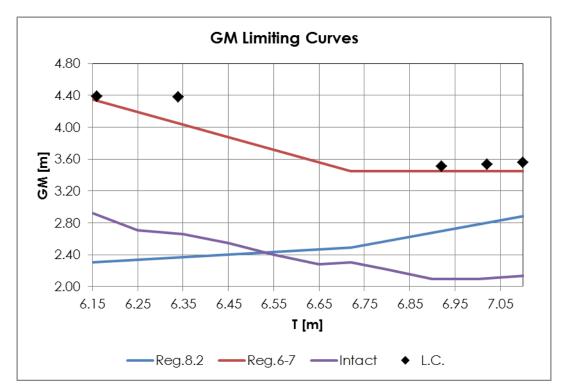


Figure 8: GM Limiting curve

7 Results of damage stability calculation

7.1 Attained index vs R

The following tables show the result of the damage stability calculations according SOLAS II-1.

ATTAINED AND REQUIRED SUBDIVISION INDEX

Subdivision length	213.00 m
Breadth at the load line	31.50 m
Breadth at the bulkhead deck	31.50 m
Number of persons N	2800
Required subdivision index	R = 0.87304
Attained subdivision index	A = 0.88248 (sum of W*P*V equals 0.967208)

INIT	SIDE	Т	GM	A/R	Α	WCOEFF	A*WCOEFF
		m	m				
DL	PORT	6.15	4.35	1.08	0.94176	0.1	0.09418
DL	STBD	6.15	4.35	1.08	0.94173	0.1	0.09417
DP	PORT	6.72	3.50	1.02	0.89145	0.2	0.17829
DP	STBD	6.72	3.50	1.02	0.89144	0.2	0.17829
DS	PORT	7.10	3.50	0.97	0.84687	0.2	0.16937
DS	STBD	7.10	3.50	0.97	0.84687	0.2	0.16937

Table 3: Attained index for each initial condition

DAMAGES	W*P*V*S
1-zone damages	0.31587
2-zone damages	0.35108
3-zone damages	0.16339
4-zone damages	0.04226
5-zone damages	0.00988
A-INDEX	0.88248

Table 4: Index according to number of zones.

7.2 Reg 8 results

T		MINGM	MAXKG	DCRI	DAM
m		m	m		
	6.15	2.30	16.47	R8.2-3	SDSR8.2S10-11.1.0
	6.72	2.49	15.73	R8.2-3	SDSR8.2S4-5.1.0-2
	7.10	2.89	15.17	R8.2-3	SDSR8.2S4-5.1.0-2

Table 5: GM limits for s>0.9 acc. Reg 8.2-3

The corresponding GM limiting curves are shown in figure 8.

8 CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

The information shown in this document and the associated files defines a state-of-the-art RoPax ferry, which is used in the Baltic as daily ferry.

9 REFERENCES

- [1] George Zaraphonitis, GOALDS Deliverable 6.4 Evaluation of innovative designs, Athens 2012
- [2] Henning Luhmann, Task 6: Damage Stability Calculations of GOALDS RoPax Designs, EMSA/OP/10/2013, Oslo 2015
- [3] Gabriele Bulian et al, Considering collision, bottom grounding and side grounding/contact in a common non-zonal framework, Proceedings of the 17th International Ship Stability Workshop, Helsinki 2019

10 ADDITIONAL INFORMATION

Following information is available as separated files:

- General Arrangment Drawing (pdf and dwg format)
- Napa data base, including hull form and internal geometry, loading conditions and damage stability data [NAPA db]

